Solveeit Logo

Question

Question: If $\frac{1}{6}$sin$\theta$, cos$\theta$, tan$\theta$ are in G.P. then $\theta$ =...

If 16\frac{1}{6}sinθ\theta, cosθ\theta, tanθ\theta are in G.P. then θ\theta =

A

2nπ\pi ±\pm π3\frac{\pi}{3}

B

2nπ\pi ±\pm π6\frac{\pi}{6}

C

nπ\pi+(-1)^{n}$$\frac{\pi}{3}

D

nπ\pi+π3\frac{\pi}{3}

Answer

Option (a)

Explanation

Solution

For numbers a,b,ca, b, c in G.P. we have b2=acb^2 = ac. Here,

a=16sinθ,b=cosθ,c=tanθ.a = \frac{1}{6}\sin\theta,\quad b = \cos\theta,\quad c = \tan\theta.

So,

cos2θ=16sinθtanθ.\cos^2\theta = \frac{1}{6}\sin\theta \cdot \tan\theta.

Since tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta}, we get:

cos2θ=16sin2θcosθ.\cos^2\theta = \frac{1}{6} \cdot \frac{\sin^2\theta}{\cos\theta}.

Multiply both sides by cosθ\cos\theta:

cos3θ=16sin2θ.\cos^3\theta = \frac{1}{6}\sin^2\theta.

Multiply by 6:

6cos3θ=sin2θ.6\cos^3\theta = \sin^2\theta.

Using the identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta:

6cos3θ=1cos2θ.6\cos^3\theta = 1 - \cos^2\theta.

Rearrange:

6cos3θ+cos2θ1=0.6\cos^3\theta + \cos^2\theta - 1 = 0.

Let x=cosθx = \cos\theta, then:

6x3+x21=0.6x^3 + x^2 - 1 = 0.

Testing x=12x = \frac{1}{2}:

6(12)3+(12)21=6(18)+141=34+141=0.6\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 1 = 6\left(\frac{1}{8}\right) + \frac{1}{4} - 1 = \frac{3}{4} + \frac{1}{4} - 1 = 0.

Thus, cosθ=12\cos\theta = \frac{1}{2}, which gives:

θ=2nπ±π3,nZ.\theta = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z}.

Explanation (Minimal):
Numbers are in G.P. ⇒ b2=acb^2 = ac leads to 6cos3θ=sin2θ6\cos^3\theta = \sin^2\theta. Substitute sin2θ=1cos2θ\sin^2\theta = 1-\cos^2\theta to form a cubic. x=12x=\frac{1}{2} is a solution, so cosθ=12\cos\theta = \frac{1}{2} and hence θ=2nπ±π3\theta = 2n\pi \pm \frac{\pi}{3}.