Solveeit Logo

Question

Question: $\int \frac{dx}{x + x\log x} =$...

dxx+xlogx=\int \frac{dx}{x + x\log x} =

A

log(1+logx)+C\log(1+\log x)+C

B

log(log(1+logx))+C\log(\log(1+\log x)) + C

C

logx+log(logx)+C\log x+\log(\log x)+C

D

log(1logx)+C\log(1-\log x)+C

Answer

log(1+logx)+C\log(1+\log x)+C

Explanation

Solution

The integral dxx+xlogx\int \frac{dx}{x + x\log x} is solved by factoring the denominator as x(1+logx)x(1 + \log x). Then, a substitution u=1+logxu = 1 + \log x is made, which implies du=1xdxdu = \frac{1}{x} dx. This transforms the integral into duu\int \frac{du}{u}, a standard integral whose solution is logu+C\log|u| + C. Substituting back u=1+logxu = 1 + \log x yields the final result log1+logx+C\log|1 + \log x| + C.