Question
Question: If $\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$, where $1 \leq x \leq 1, -2 \leq y \leq 2, x \leq \f...
If cos−1x−cos−12y=α, where 1≤x≤1,−2≤y≤2,x≤2y then for all x, y, 4x2−4xycosα+y2 is equal to :

A
4sin2α
B
2sin2α
C
4sin2α−2x2y2
D
4cos2α+2x2y2
Answer
4sin2α
Explanation
Solution
We are given:
cos−1x−cos−12y=αLet
A=cos−1xandB=cos−12y,so that
A−B=α⇒A=α+B.Then,
x=cosA=cos(α+B)=cosαcosB−sinαsinB.Since cosB=2y, substitute:
x=cosα⋅2y−sinαsinB.Now, rewrite the target expression:
4x2−4xycosα+y2.Notice that completing the square for the first two terms gives:
(2x−ycosα)2=4x2−4xycosα+y2cos2α.Thus,
4x2−4xycosα+y2=(2x−ycosα)2+y2sin2α.Next, express 2x−ycosα using our expression for x:
2x=2(2ycosα−sinαsinB)=ycosα−2sinαsinB.So,
2x−ycosα=−2sinαsinB.Substitute back:
(2x−ycosα)2=4sin2αsin2B.Also, note that y=2cosB (since cosB=2y), hence:
y2sin2α=4cos2Bsin2α.Now, the expression becomes:
4sin2αsin2B+4sin2αcos2B=4sin2α(sin2B+cos2B).Since sin2B+cos2B=1:
4sin2α(sin2B+cos2B)=4sin2α.