Solveeit Logo

Question

Question: If $\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$, where $1 \leq x \leq 1, -2 \leq y \leq 2, x \leq \f...

If cos1xcos1y2=α\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha, where 1x1,2y2,xy21 \leq x \leq 1, -2 \leq y \leq 2, x \leq \frac{y}{2} then for all x, y, 4x24xycosα+y24x^2 - 4xy \cos \alpha + y^2 is equal to :

A

4sin2α4 \sin^2 \alpha

B

2sin2α2 \sin^2 \alpha

C

4sin2α2x2y24 \sin^2 \alpha - 2x^2y^2

D

4cos2α+2x2y24 \cos^2 \alpha + 2x^2y^2

Answer

4sin2α4\sin^2\alpha

Explanation

Solution

We are given:

cos1xcos1y2=α\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha

Let

A=cos1xandB=cos1y2,A = \cos^{-1}x \quad \text{and} \quad B = \cos^{-1}\frac{y}{2},

so that

AB=αA=α+B.A - B = \alpha \quad \Rightarrow \quad A = \alpha + B.

Then,

x=cosA=cos(α+B)=cosαcosBsinαsinB.x = \cos A = \cos(\alpha+B) = \cos\alpha\cos B - \sin\alpha\sin B.

Since cosB=y2\cos B = \frac{y}{2}, substitute:

x=cosαy2sinαsinB.x = \cos\alpha \cdot \frac{y}{2} - \sin\alpha\sin B.

Now, rewrite the target expression:

4x24xycosα+y2.4x^2 - 4xy \cos \alpha + y^2.

Notice that completing the square for the first two terms gives:

(2xycosα)2=4x24xycosα+y2cos2α.(2x - y\cos\alpha)^2 = 4x^2 - 4xy\cos\alpha + y^2\cos^2\alpha.

Thus,

4x24xycosα+y2=(2xycosα)2+y2sin2α.4x^2 - 4xy\cos\alpha + y^2 = (2x - y\cos\alpha)^2 + y^2\sin^2\alpha.

Next, express 2xycosα2x - y\cos\alpha using our expression for xx:

2x=2(ycosα2sinαsinB)=ycosα2sinαsinB.2x = 2\left(\frac{y\cos\alpha}{2} - \sin\alpha\sin B\right) = y\cos\alpha - 2\sin\alpha\sin B.

So,

2xycosα=2sinαsinB.2x - y\cos\alpha = -2\sin\alpha\sin B.

Substitute back:

(2xycosα)2=4sin2αsin2B.(2x - y\cos\alpha)^2 = 4\sin^2\alpha\sin^2B.

Also, note that y=2cosBy = 2\cos B (since cosB=y2\cos B = \frac{y}{2}), hence:

y2sin2α=4cos2Bsin2α.y^2\sin^2\alpha = 4\cos^2B\sin^2\alpha.

Now, the expression becomes:

4sin2αsin2B+4sin2αcos2B=4sin2α(sin2B+cos2B).4\sin^2\alpha\sin^2B + 4\sin^2\alpha\cos^2B = 4\sin^2\alpha(\sin^2B+\cos^2B).

Since sin2B+cos2B=1\sin^2B+\cos^2B=1:

4sin2α(sin2B+cos2B)=4sin2α.4\sin^2\alpha(\sin^2B+\cos^2B)=4\sin^2\alpha.