Solveeit Logo

Question

Question: If f(x) = 2x-6x, then f'(x) is...

If f(x) = 2x-6x, then f'(x) is

Answer

-4

Explanation

Solution

The given function is f(x)=2x6xf(x) = 2x - 6x.

First, simplify the function f(x)f(x):

f(x)=(26)xf(x) = (2 - 6)x f(x)=4xf(x) = -4x

Now, find the derivative of f(x)f(x) with respect to xx. The derivative of a term cxcx (where cc is a constant) is simply cc. Using the power rule for differentiation, ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}:

f(x)=ddx(4x)f'(x) = \frac{d}{dx}(-4x) f(x)=4ddx(x1)f'(x) = -4 \cdot \frac{d}{dx}(x^1) f(x)=4(1x11)f'(x) = -4 \cdot (1 \cdot x^{1-1}) f(x)=4(1x0)f'(x) = -4 \cdot (1 \cdot x^0)

Since x0=1x^0 = 1 (for x0x \neq 0),

f(x)=41f'(x) = -4 \cdot 1 f(x)=4f'(x) = -4