Solveeit Logo

Question

Question: The principal value of $\tan^{-1}\left(\cot\left(\frac{43\pi}{4}\right)\right)$ is...

The principal value of tan1(cot(43π4))\tan^{-1}\left(\cot\left(\frac{43\pi}{4}\right)\right) is

A

3π4\frac{-3\pi}{4}

B

3π4\frac{3\pi}{4}

C

π4\frac{-\pi}{4}

D

π4\frac{\pi}{4}

Answer

π4\frac{-\pi}{4}

Explanation

Solution

  1. Write

    cot(43π4)=tan(π243π4)=tan(41π4).\cot\left(\frac{43\pi}{4}\right)=\tan\left(\frac{\pi}{2}-\frac{43\pi}{4}\right)=\tan\left(-\frac{41\pi}{4}\right).
  2. Since the principal value of tan1\tan^{-1} lies in (π2,π2)\left(-\frac{\pi}{2},\frac{\pi}{2}\right), we find an equivalent angle:

    41π4+10π=41π4+40π4=π4.-\frac{41\pi}{4} + 10\pi = -\frac{41\pi}{4} + \frac{40\pi}{4} = -\frac{\pi}{4}.
  3. Thus,

    tan1(cot(43π4))=π4.\tan^{-1}\left(\cot\left(\frac{43\pi}{4}\right)\right) = -\frac{\pi}{4}.

Explanation (Minimal): Express cot(43π4)\cot\left(\frac{43\pi}{4}\right) as tan(41π4)\tan\left(-\frac{41\pi}{4}\right). Adjust 41π4-\frac{41\pi}{4} by adding 10π10\pi (due to the π\pi period of tan\tan) to yield π4-\frac{\pi}{4} which lies in (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).