Solveeit Logo

Question

Question: The number of gas molecules effusing per second unit area through an orifice on the wall of the cont...

The number of gas molecules effusing per second unit area through an orifice on the wall of the container is 14.N.uav\frac{1}{4}.N^*.u_{av}, where NN^* is the number of molecules per unit volume. What is this number under STP conditions for nitrogen gas?

A

1.53 x 102410^{24} m2s1m^{-2}s^{-1}

B

1.03 × 102210^{22} m2s1m^{-2}s^{-1}

C

3.05 x 102710^{27} m2s1m^{-2}s^{-1}

D

3.05 × 102110^{21} m2s1m^{-2}s^{-1}

Answer

3.05 x 102710^{27} m2s1m^{-2}s^{-1}

Explanation

Solution

At STP, T=273.15T = 273.15 K and P=1.013×105P = 1.013 \times 10^5 Pa. The number density NN^* is calculated using P=NkTP = N^*kT: N=PkT=1.013×105 Pa(1.38×1023 J/K)×(273.15 K)2.687×1025 m⁻³N^* = \frac{P}{kT} = \frac{1.013 \times 10^5 \text{ Pa}}{(1.38 \times 10^{-23} \text{ J/K}) \times (273.15 \text{ K})} \approx 2.687 \times 10^{25} \text{ m⁻³}. The average speed uavu_{av} for nitrogen (M = 0.028 kg/mol) is: uav=8RTπM=8×8.314×273.15π×0.028454.26 m/su_{av} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.314 \times 273.15}{\pi \times 0.028}} \approx 454.26 \text{ m/s}. The effusion rate is 14Nuav=14×(2.687×1025)×454.263.05×1027 m⁻²s⁻¹\frac{1}{4}N^*u_{av} = \frac{1}{4} \times (2.687 \times 10^{25}) \times 454.26 \approx 3.05 \times 10^{27} \text{ m⁻²s⁻¹}.