Solveeit Logo

Question

Question: $\int sin^4 x \, dx = $...

sin4xdx=\int sin^4 x \, dx =

A

132(12x+8sin2x+sin4x)+c\frac{1}{32}(12x + 8sin2x + sin4x) + c

B

132(12x+8sin2xsin4x)+c\frac{1}{32}(12x + 8sin2x \sin^4 x) + c

C

132(12x8sin2x+sin4x)+c\frac{1}{32}(12x - 8sin2x + sin4x) + c

D

132(12x8sin2xsin4x)+c\frac{1}{32}(12x - 8sin2x \sin^4 x) + c

Answer

132(12x8sin2x+sin4x)+C\frac{1}{32}(12x - 8\sin2x + \sin4x) + C

Explanation

Solution

We start with the power reduction formula:

sin4x=3812cos2x+18cos4x.\sin^4 x = \frac{3}{8} - \frac{1}{2}\cos2x + \frac{1}{8}\cos4x.

Integrate term-by-term:

sin4xdx=(3812cos2x+18cos4x)dx.\int \sin^4 x \, dx = \int \left(\frac{3}{8} - \frac{1}{2}\cos2x + \frac{1}{8}\cos4x\right) dx. =38x12sin2x2+18sin4x4+C.= \frac{3}{8}x - \frac{1}{2}\cdot\frac{\sin2x}{2} + \frac{1}{8}\cdot\frac{\sin4x}{4} + C. =38xsin2x4+sin4x32+C.= \frac{3}{8}x - \frac{\sin2x}{4} + \frac{\sin4x}{32} + C.

Expressing with denominator 32:

=12x8sin2x+sin4x32+C.= \frac{12x - 8\sin2x + \sin4x}{32} + C.

Thus, the correct answer is Option (c).