Question
Question: $\int sin^4 x \, dx = $...
∫sin4xdx=

A
321(12x+8sin2x+sin4x)+c
B
321(12x+8sin2xsin4x)+c
C
321(12x−8sin2x+sin4x)+c
D
321(12x−8sin2xsin4x)+c
Answer
321(12x−8sin2x+sin4x)+C
Explanation
Solution
We start with the power reduction formula:
sin4x=83−21cos2x+81cos4x.Integrate term-by-term:
∫sin4xdx=∫(83−21cos2x+81cos4x)dx. =83x−21⋅2sin2x+81⋅4sin4x+C. =83x−4sin2x+32sin4x+C.Expressing with denominator 32:
=3212x−8sin2x+sin4x+C.Thus, the correct answer is Option (c).