Solveeit Logo

Question

Question: If two equal vectors $\overline{A}$ and $\overline{B}$ are inclined at an angle $\theta$ and each of...

If two equal vectors A\overline{A} and B\overline{B} are inclined at an angle θ\theta and each of magnitude is f, then AB|\overline{A}-\overline{B}|

A

2fcos(θ2)2f \cos (\frac{\theta}{2})

B

2fsin(θ2)2f \sin (\frac{\theta}{2})

C

f2(1sinϕ)f\sqrt{2(1-\sin\phi)}

D

f2(1+sinϕ)f\sqrt{2(1+\sin\phi)}

Answer

2fsin(θ2)2f \sin (\frac{\theta}{2})

Explanation

Solution

Let the two equal vectors be A\overline{A} and B\overline{B}. The magnitude of each vector is given as ff, so A=f|\overline{A}| = f and B=f|\overline{B}| = f. The angle between the two vectors is θ\theta. We need to find the magnitude of the difference between the two vectors, AB|\overline{A} - \overline{B}|.

The magnitude of the difference of two vectors A\overline{A} and B\overline{B} is given by the formula: AB=A2+B22ABcosθ|\overline{A} - \overline{B}| = \sqrt{|\overline{A}|^2 + |\overline{B}|^2 - 2|\overline{A}||\overline{B}|\cos\theta}

Substitute the given magnitudes A=f|\overline{A}| = f and B=f|\overline{B}| = f into the formula: AB=f2+f22(f)(f)cosθ|\overline{A} - \overline{B}| = \sqrt{f^2 + f^2 - 2(f)(f)\cos\theta} AB=2f22f2cosθ|\overline{A} - \overline{B}| = \sqrt{2f^2 - 2f^2\cos\theta}

Factor out 2f22f^2 from the terms under the square root: AB=2f2(1cosθ)|\overline{A} - \overline{B}| = \sqrt{2f^2(1 - \cos\theta)}

Now, use the trigonometric identity 1cosθ=2sin2(θ2)1 - \cos\theta = 2\sin^2(\frac{\theta}{2}). Substitute this identity into the expression: AB=2f2(2sin2(θ2))|\overline{A} - \overline{B}| = \sqrt{2f^2(2\sin^2(\frac{\theta}{2}))} AB=4f2sin2(θ2)|\overline{A} - \overline{B}| = \sqrt{4f^2\sin^2(\frac{\theta}{2})}

Taking the square root, we get: AB=(2fsin(θ2))2|\overline{A} - \overline{B}| = \sqrt{(2f\sin(\frac{\theta}{2}))^2} AB=2fsin(θ2)|\overline{A} - \overline{B}| = |2f\sin(\frac{\theta}{2})|

Since ff is a magnitude, f0f \ge 0. The angle θ\theta between two vectors is typically considered in the range 0θπ0 \le \theta \le \pi. For this range, 0θ2π20 \le \frac{\theta}{2} \le \frac{\pi}{2}, and sin(θ2)0\sin(\frac{\theta}{2}) \ge 0. Therefore, sin(θ2)=sin(θ2)|\sin(\frac{\theta}{2})| = \sin(\frac{\theta}{2}).

So, the magnitude of the difference is: AB=2fsin(θ2)|\overline{A} - \overline{B}| = 2f\sin(\frac{\theta}{2})