Solveeit Logo

Question

Question: If $1(50)^{49} + 2(51)^1(50)^{48} + 3(51)^2(50)^{47} + \dots + (50)(51)^{49} = k(50)^{49}$ then the ...

If 1(50)49+2(51)1(50)48+3(51)2(50)47++(50)(51)49=k(50)491(50)^{49} + 2(51)^1(50)^{48} + 3(51)^2(50)^{47} + \dots + (50)(51)^{49} = k(50)^{49} then the number of factor of k of the form 4m + 1, (mWm \in W) is/are

A

3

B

5

C

4

D

7

Answer

5

Explanation

Solution

The given series is S=n=150n(51)n1(50)50nS = \sum_{n=1}^{50} n (51)^{n-1} (50)^{50-n}. Let a=50a=50 and b=51b=51. The series is S=n=150nbn1a50nS = \sum_{n=1}^{50} n b^{n-1} a^{50-n}. Factoring out a49a^{49}, we get S=a49[1+2(ba)+3(ba)2++50(ba)49]S = a^{49} \left[ 1 + 2\left(\frac{b}{a}\right) + 3\left(\frac{b}{a}\right)^2 + \dots + 50\left(\frac{b}{a}\right)^{49} \right]. Let r=ba=5150r = \frac{b}{a} = \frac{51}{50}. Let T=1+2r+3r2++50r49T = 1 + 2r + 3r^2 + \dots + 50r^{49}. This is an arithmetic-geometric series. Consider the geometric series G(r)=1+r+r2++r50=r511r1G(r) = 1 + r + r^2 + \dots + r^{50} = \frac{r^{51}-1}{r-1}. Differentiating with respect to rr, we get T=G(r)=ddr(r511r1)=50r5151r50+1(r1)2T = G'(r) = \frac{d}{dr}\left(\frac{r^{51}-1}{r-1}\right) = \frac{50r^{51} - 51r^{50} + 1}{(r-1)^2}. Substituting r=5150r = \frac{51}{50}, we find r1=150r-1 = \frac{1}{50} and (r1)2=12500(r-1)^2 = \frac{1}{2500}. T=50(5150)5151(5150)50+1(150)2=2500[50515150515151505050+1]T = \frac{50(\frac{51}{50})^{51} - 51(\frac{51}{50})^{50} + 1}{(\frac{1}{50})^2} = 2500 \left[ 50 \cdot \frac{51^{51}}{50^{51}} - 51 \cdot \frac{51^{50}}{50^{50}} + 1 \right] T=2500[5151505051515050+1]=2500[0+1]=2500T = 2500 \left[ \frac{51^{51}}{50^{50}} - \frac{51^{51}}{50^{50}} + 1 \right] = 2500 [0 + 1] = 2500. So, S=a49T=(50)492500S = a^{49} \cdot T = (50)^{49} \cdot 2500. Given S=k(50)49S = k(50)^{49}, we have k=2500k = 2500. The prime factorization of k=2500k=2500 is 22×542^2 \times 5^4. A factor dd of kk is of the form 2a×5b2^a \times 5^b, where 0a20 \le a \le 2 and 0b40 \le b \le 4. We need factors dd such that d1(mod4)d \equiv 1 \pmod{4}. d(2a(mod4))×(5b(mod4))(mod4)d \equiv (2^a \pmod{4}) \times (5^b \pmod{4}) \pmod{4}. Since 51(mod4)5 \equiv 1 \pmod{4}, 5b1b1(mod4)5^b \equiv 1^b \equiv 1 \pmod{4}. So, d2a(mod4)d \equiv 2^a \pmod{4}. For d1(mod4)d \equiv 1 \pmod{4}, we need 2a1(mod4)2^a \equiv 1 \pmod{4}. This is true only when a=0a=0. The factors of the form 4m+14m+1 are of the form 20×5b=5b2^0 \times 5^b = 5^b, where b{0,1,2,3,4}b \in \{0, 1, 2, 3, 4\}. There are 5 possible values for bb (0, 1, 2, 3, 4), so there are 5 factors of kk of the form 4m+14m+1. These factors are 50=15^0=1, 51=55^1=5, 52=255^2=25, 53=1255^3=125, and 54=6255^4=625. All are of the form 4m+14m+1 for mWm \in W.