Solveeit Logo

Question

Question: At TK, a compound $AB_2(g)$ dissociates according to the reaction $2AB_2(g) \rightleftharpoons 2AB(g...

At TK, a compound AB2(g)AB_2(g) dissociates according to the reaction 2AB2(g)2AB(g)+B2(g)2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g), with a degree of dissociation 'x' which is small compared with unity. The expression for 'x' in terms of the equilibrium constant, KpK_p and the total pressure P is

A

KpP\frac{K_p}{P}

B

(Kp)1/3(K_p)^{1/3}

C

(2KpP)1/3\left(\frac{2K_p}{P}\right)^{1/3}

D

(KpP)1/3\left(\frac{K_p}{P}\right)^{1/3}

Answer

(2KpP)1/3\left(\frac{2K_p}{P}\right)^{1/3}

Explanation

Solution

Starting with 1 mole of AB2AB_2, at equilibrium we have (1x)(1-x) moles of AB2AB_2, xx moles of ABAB, and x/2x/2 moles of B2B_2. The total moles are 1x+x+x/2=1+x/21 - x + x + x/2 = 1 + x/2. The partial pressures are: PAB2=1x1+x/2PP_{AB_2} = \frac{1-x}{1+x/2}P PAB=x1+x/2PP_{AB} = \frac{x}{1+x/2}P PB2=x/21+x/2PP_{B_2} = \frac{x/2}{1+x/2}P The equilibrium constant KpK_p is given by: Kp=(PAB)2PB2(PAB2)2=(x1+x/2P)2(x/21+x/2P)(1x1+x/2P)2=x3/2P(1+x/2)(1x)2K_p = \frac{(P_{AB})^2 P_{B_2}}{(P_{AB_2})^2} = \frac{\left(\frac{x}{1+x/2}P\right)^2 \left(\frac{x/2}{1+x/2}P\right)}{\left(\frac{1-x}{1+x/2}P\right)^2} = \frac{x^3/2 \cdot P}{(1+x/2)(1-x)^2} Since xx is small, 1+x/211+x/2 \approx 1 and 1x11-x \approx 1. Kpx3/2P112=x3P2K_p \approx \frac{x^3/2 \cdot P}{1 \cdot 1^2} = \frac{x^3 P}{2} Solving for xx: x3=2KpP    x=(2KpP)1/3x^3 = \frac{2K_p}{P} \implies x = \left(\frac{2K_p}{P}\right)^{1/3}