Solveeit Logo

Question

Question: Two resistors R₁ = (4 ± 0.8) Ω and R₂ = (4 ± 0.4) Ω are connected in parallel. The equivalent resist...

Two resistors R₁ = (4 ± 0.8) Ω and R₂ = (4 ± 0.4) Ω are connected in parallel. The equivalent resistance of their parallel combination will be:

A

(4 ± 0.4) Ω

B

(2 ± 0.4) Ω

C

(2 ± 0.3) Ω

D

(4 ± 0.3) Ω

Answer

(2 ± 0.3) Ω

Explanation

Solution

The equivalent resistance ReqR_{eq} of two resistors R1R_1 and R2R_2 connected in parallel is given by the formula:

1Req=1R1+1R2\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}

The given resistances are R1=(4±0.8)ΩR_1 = (4 \pm 0.8) \Omega and R2=(4±0.4)ΩR_2 = (4 \pm 0.4) \Omega.
The nominal values are R1,nominal=4ΩR_{1,nominal} = 4 \Omega and R2,nominal=4ΩR_{2,nominal} = 4 \Omega.
The uncertainties are ΔR1=0.8Ω\Delta R_1 = 0.8 \Omega and ΔR2=0.4Ω\Delta R_2 = 0.4 \Omega.

First, calculate the nominal value of the equivalent resistance:

1Req,nominal=1R1,nominal+1R2,nominal=14+14=24=12\frac{1}{R_{eq,nominal}} = \frac{1}{R_{1,nominal}} + \frac{1}{R_{2,nominal}} = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}

Req,nominal=2ΩR_{eq,nominal} = 2 \Omega.

Next, calculate the uncertainty in ReqR_{eq}. The formula for parallel resistance involves the sum of inverse resistances. Let X=1RX = \frac{1}{R}. The uncertainty in XX is related to the uncertainty in RR by ΔX=dXdRΔR\Delta X = \left|\frac{dX}{dR}\right| \Delta R.

For X=R1X = R^{-1}, dXdR=R2\frac{dX}{dR} = -R^{-2}. So, ΔX=R2ΔR=ΔRR2\Delta X = |-R^{-2}| \Delta R = \frac{\Delta R}{R^2}.

Let Xeq=1ReqX_{eq} = \frac{1}{R_{eq}}, X1=1R1X_1 = \frac{1}{R_1}, and X2=1R2X_2 = \frac{1}{R_2}.
The relationship is Xeq=X1+X2X_{eq} = X_1 + X_2.
When quantities are added, their absolute uncertainties add up (for maximum possible error):
ΔXeq=ΔX1+ΔX2\Delta X_{eq} = \Delta X_1 + \Delta X_2.

Calculate ΔX1\Delta X_1 and ΔX2\Delta X_2 using the nominal values of R1R_1 and R2R_2:

ΔX1=ΔR1R1,nominal2=0.842=0.816=0.05Ω1\Delta X_1 = \frac{\Delta R_1}{R_{1,nominal}^2} = \frac{0.8}{4^2} = \frac{0.8}{16} = 0.05 \Omega^{-1}.
ΔX2=ΔR2R2,nominal2=0.442=0.416=0.025Ω1\Delta X_2 = \frac{\Delta R_2}{R_{2,nominal}^2} = \frac{0.4}{4^2} = \frac{0.4}{16} = 0.025 \Omega^{-1}.

Now, calculate ΔXeq\Delta X_{eq}:

ΔXeq=0.05+0.025=0.075Ω1\Delta X_{eq} = 0.05 + 0.025 = 0.075 \Omega^{-1}.

Finally, relate ΔXeq\Delta X_{eq} back to ΔReq\Delta R_{eq}. We have Req=Xeq1R_{eq} = X_{eq}^{-1}.
The uncertainty in ReqR_{eq} is ΔReq=dReqdXeqΔXeq\Delta R_{eq} = \left|\frac{dR_{eq}}{dX_{eq}}\right| \Delta X_{eq}.
For Req=Xeq1R_{eq} = X_{eq}^{-1}, dReqdXeq=Xeq2\frac{dR_{eq}}{dX_{eq}} = -X_{eq}^{-2}.
So, ΔReq=Xeq2ΔXeq=ΔXeqXeq2\Delta R_{eq} = |-X_{eq}^{-2}| \Delta X_{eq} = \frac{\Delta X_{eq}}{X_{eq}^2}.
Using the nominal value Xeq,nominal=1Req,nominal=12=0.5Ω1X_{eq,nominal} = \frac{1}{R_{eq,nominal}} = \frac{1}{2} = 0.5 \Omega^{-1}:

ΔReq=0.075(0.5)2=0.0750.25=0.075×40.25×4=0.31=0.3Ω\Delta R_{eq} = \frac{0.075}{(0.5)^2} = \frac{0.075}{0.25} = \frac{0.075 \times 4}{0.25 \times 4} = \frac{0.3}{1} = 0.3 \Omega.

The equivalent resistance is Req=Req,nominal±ΔReq=(2±0.3)ΩR_{eq} = R_{eq,nominal} \pm \Delta R_{eq} = (2 \pm 0.3) \Omega.