Solveeit Logo

Question

Question: Let $N = \prod_{r=1}^{45}sin((2r-1)^\circ)$, then $\sqrt{2 \cdot 2^{45}N}$ is equal to...

Let N=r=145sin((2r1))N = \prod_{r=1}^{45}sin((2r-1)^\circ), then 2245N\sqrt{2 \cdot 2^{45}N} is equal to

Answer

2^{3/4}

Explanation

Solution

The problem asks us to evaluate 2245N\sqrt{2 \cdot 2^{45}N} where N=r=145sin((2r1))N = \prod_{r=1}^{45}sin((2r-1)^\circ).

First, let's write out the terms of NN: N=sin(1)sin(3)sin(5)sin((2451))N = sin(1^\circ) \cdot sin(3^\circ) \cdot sin(5^\circ) \cdots sin((2 \cdot 45 - 1)^\circ) N=sin(1)sin(3)sin(5)sin(89)N = sin(1^\circ) \cdot sin(3^\circ) \cdot sin(5^\circ) \cdots sin(89^\circ)

This is a product of sines of odd angles from 11^\circ to 8989^\circ. There are 8912+1=44+1=45\frac{89-1}{2} + 1 = 44+1 = 45 terms in the product.

We use the trigonometric identity sin(90x)=cos(x)sin(90^\circ - x) = cos(x). Let's pair the terms in the product NN: sin(89)=sin(901)=cos(1)sin(89^\circ) = sin(90^\circ - 1^\circ) = cos(1^\circ) sin(87)=sin(903)=cos(3)sin(87^\circ) = sin(90^\circ - 3^\circ) = cos(3^\circ) ... sin(47)=sin(9043)=cos(43)sin(47^\circ) = sin(90^\circ - 43^\circ) = cos(43^\circ)

The middle term in the product is sin(45)sin(45^\circ). So, we can rewrite NN by grouping terms: N=(sin(1)sin(3)sin(43))sin(45)(sin(47)sin(49)sin(89))N = (sin(1^\circ) \cdot sin(3^\circ) \cdots sin(43^\circ)) \cdot sin(45^\circ) \cdot (sin(47^\circ) \cdot sin(49^\circ) \cdots sin(89^\circ)) Substitute the cosine equivalents for the terms sin(47)sin(47^\circ) through sin(89)sin(89^\circ): N=(sin(1)sin(3)sin(43))sin(45)(cos(43)cos(41)cos(1))N = (sin(1^\circ) \cdot sin(3^\circ) \cdots sin(43^\circ)) \cdot sin(45^\circ) \cdot (cos(43^\circ) \cdot cos(41^\circ) \cdots cos(1^\circ))

Now, rearrange the terms to form pairs of sin(x)cos(x)sin(x)cos(x): N=(sin(1)cos(1))(sin(3)cos(3))(sin(43)cos(43))sin(45)N = (sin(1^\circ)cos(1^\circ)) \cdot (sin(3^\circ)cos(3^\circ)) \cdots (sin(43^\circ)cos(43^\circ)) \cdot sin(45^\circ)

We use the identity sin(x)cos(x)=12sin(2x)sin(x)cos(x) = \frac{1}{2}sin(2x). The number of pairs (sin(x)cos(x))(sin(x)cos(x)) is the number of terms from 11^\circ to 4343^\circ, which is 4312+1=22\frac{43-1}{2} + 1 = 22 pairs.

Substitute the identity into the expression for NN: N=(12sin(2))(12sin(6))(12sin(86))sin(45)N = \left(\frac{1}{2}sin(2^\circ)\right) \cdot \left(\frac{1}{2}sin(6^\circ)\right) \cdots \left(\frac{1}{2}sin(86^\circ)\right) \cdot sin(45^\circ) There are 22 such terms, each with a factor of 12\frac{1}{2}. N=(12)22(sin(2)sin(6)sin(86))sin(45)N = \left(\frac{1}{2}\right)^{22} \cdot (sin(2^\circ) \cdot sin(6^\circ) \cdots sin(86^\circ)) \cdot sin(45^\circ)

We know sin(45)=12sin(45^\circ) = \frac{1}{\sqrt{2}}. N=122212(sin(2)sin(6)sin(86))N = \frac{1}{2^{22}} \cdot \frac{1}{\sqrt{2}} \cdot (sin(2^\circ) \cdot sin(6^\circ) \cdots sin(86^\circ)) N=122221/2(sin(2)sin(6)sin(86))N = \frac{1}{2^{22} \cdot 2^{1/2}} \cdot (sin(2^\circ) \cdot sin(6^\circ) \cdots sin(86^\circ)) N=1222.5(sin(2)sin(6)sin(86))N = \frac{1}{2^{22.5}} \cdot (sin(2^\circ) \cdot sin(6^\circ) \cdots sin(86^\circ))

Let's look at the product P=sin(2)sin(6)sin(86)P' = sin(2^\circ) \cdot sin(6^\circ) \cdots sin(86^\circ). The angles are 2,6,10,,862^\circ, 6^\circ, 10^\circ, \ldots, 86^\circ. These are of the form (4k2)(4k-2)^\circ. There are 22 terms in this product. This product is of the form k=1nsin((2k1)π2n)=12n1\prod_{k=1}^{n} \sin\left(\frac{(2k-1)\pi}{2n}\right) = \frac{1}{2^{n-1}}. This formula is for angles π2n,3π2n,,(2n1)π2n\frac{\pi}{2n}, \frac{3\pi}{2n}, \ldots, \frac{(2n-1)\pi}{2n}. If we set 2n=902n = 90, then n=45n=45. The angles would be π90,3π90,,89π90\frac{\pi}{90}, \frac{3\pi}{90}, \ldots, \frac{89\pi}{90}. In degrees, this is 2,6,,1782^\circ, 6^\circ, \ldots, 178^\circ. The product k=145sin((2k1)2)=sin(2)sin(6)sin(178)\prod_{k=1}^{45} sin((2k-1) \cdot 2^\circ) = sin(2^\circ)sin(6^\circ)\cdots sin(178^\circ). This product can be written as: (sin(2)sin(6)sin(86))(sin(94)sin(98)sin(178))(sin(2^\circ)sin(6^\circ)\cdots sin(86^\circ)) \cdot (sin(94^\circ)sin(98^\circ)\cdots sin(178^\circ)) Since sin(180x)=sin(x)sin(180^\circ - x) = sin(x), we have: sin(178)=sin(2)sin(178^\circ) = sin(2^\circ) sin(174)=sin(6)sin(174^\circ) = sin(6^\circ) ... sin(94)=sin(86)sin(94^\circ) = sin(86^\circ) So, P=(sin(2)sin(6)sin(86))2P' = (sin(2^\circ)sin(6^\circ)\cdots sin(86^\circ))^2. The formula gives k=145sin((2k1)π90)=12451=1244\prod_{k=1}^{45} sin(\frac{(2k-1)\pi}{90}) = \frac{1}{2^{45-1}} = \frac{1}{2^{44}}. Therefore, (sin(2)sin(6)sin(86))2=1244(sin(2^\circ)sin(6^\circ)\cdots sin(86^\circ))^2 = \frac{1}{2^{44}}. Taking the square root (since all sines are positive in the first quadrant), we get: sin(2)sin(6)sin(86)=1244=1222sin(2^\circ)sin(6^\circ)\cdots sin(86^\circ) = \sqrt{\frac{1}{2^{44}}} = \frac{1}{2^{22}}.

Now substitute this back into the expression for NN: N=1222.5(1222)N = \frac{1}{2^{22.5}} \cdot \left(\frac{1}{2^{22}}\right) N=1222.5+22=1244.5N = \frac{1}{2^{22.5 + 22}} = \frac{1}{2^{44.5}}

Finally, we need to find the value of 2245N\sqrt{2 \cdot 2^{45}N}: 2245N=212451244.5\sqrt{2 \cdot 2^{45}N} = \sqrt{2^{1} \cdot 2^{45} \cdot \frac{1}{2^{44.5}}} =21+4544.5= \sqrt{2^{1+45-44.5}} =24644.5= \sqrt{2^{46-44.5}} =21.5= \sqrt{2^{1.5}} =23/2= \sqrt{2^{3/2}} =(23/2)1/2= (2^{3/2})^{1/2} =23/4= 2^{3/4}

The final answer is 23/42^{3/4}.