Solveeit Logo

Question

Question: Let $f(x)=(x+\log_3 x)^2 + x^2 \forall x>0$, then derivative of $f^{-1}(x)$ w.r.t. $x$ at $x=2$ is...

Let f(x)=(x+log3x)2+x2x>0f(x)=(x+\log_3 x)^2 + x^2 \forall x>0, then derivative of f1(x)f^{-1}(x) w.r.t. xx at x=2x=2 is

A

ln34ln3+2\frac{\ln 3}{4 \ln 3+2}

B

16ln3+2\frac{1}{6 \ln 3+2}

C

ln33ln3+8\frac{\ln 3}{3 \ln 3+8}

D

3ln32ln38\frac{3 \ln 3}{2 \ln 3-8}

Answer

ln34ln3+2\frac{\ln 3}{4 \ln 3+2}

Explanation

Solution

Let y=f(x)y=f(x). We want to find (f1)(2)(f^{-1})'(2). The formula is (f1)(y)=1f(x)(f^{-1})'(y) = \frac{1}{f'(x)} where y=f(x)y=f(x). First, find xx such that f(x)=2f(x)=2. f(1)=(1+log31)2+12=(1+0)2+1=1+1=2f(1) = (1+\log_3 1)^2 + 1^2 = (1+0)^2 + 1 = 1+1 = 2. So, f(1)=2f(1)=2, which means f1(2)=1f^{-1}(2)=1. Next, find the derivative of f(x)f(x): f(x)=ddx((x+log3x)2+x2)f'(x) = \frac{d}{dx} \left( (x+\log_3 x)^2 + x^2 \right). Using log3x=lnxln3\log_3 x = \frac{\ln x}{\ln 3}, so ddx(log3x)=1xln3\frac{d}{dx}(\log_3 x) = \frac{1}{x \ln 3}. f(x)=2(x+log3x)(1+1xln3)+2xf'(x) = 2(x+\log_3 x) \cdot \left(1 + \frac{1}{x \ln 3}\right) + 2x. Evaluate f(1)f'(1): f(1)=2(1+log31)(1+11ln3)+2(1)f'(1) = 2(1+\log_3 1) \cdot \left(1 + \frac{1}{1 \cdot \ln 3}\right) + 2(1) f(1)=2(1+0)(1+1ln3)+2f'(1) = 2(1+0) \cdot \left(1 + \frac{1}{\ln 3}\right) + 2 f(1)=2(ln3+1ln3)+2=2ln3+2+2ln3ln3=4ln3+2ln3f'(1) = 2 \left(\frac{\ln 3 + 1}{\ln 3}\right) + 2 = \frac{2 \ln 3 + 2 + 2 \ln 3}{\ln 3} = \frac{4 \ln 3 + 2}{\ln 3}. Finally, (f1)(2)=1f(1)=14ln3+2ln3=ln34ln3+2(f^{-1})'(2) = \frac{1}{f'(1)} = \frac{1}{\frac{4 \ln 3 + 2}{\ln 3}} = \frac{\ln 3}{4 \ln 3 + 2}.