Question
Question: Let $f(x)=(x+\log_3 x)^2 + x^2 \forall x>0$, then derivative of $f^{-1}(x)$ w.r.t. $x$ at $x=2$ is...
Let f(x)=(x+log3x)2+x2∀x>0, then derivative of f−1(x) w.r.t. x at x=2 is

A
4ln3+2ln3
B
6ln3+21
C
3ln3+8ln3
D
2ln3−83ln3
Answer
4ln3+2ln3
Explanation
Solution
Let y=f(x). We want to find (f−1)′(2). The formula is (f−1)′(y)=f′(x)1 where y=f(x). First, find x such that f(x)=2. f(1)=(1+log31)2+12=(1+0)2+1=1+1=2. So, f(1)=2, which means f−1(2)=1. Next, find the derivative of f(x): f′(x)=dxd((x+log3x)2+x2). Using log3x=ln3lnx, so dxd(log3x)=xln31. f′(x)=2(x+log3x)⋅(1+xln31)+2x. Evaluate f′(1): f′(1)=2(1+log31)⋅(1+1⋅ln31)+2(1) f′(1)=2(1+0)⋅(1+ln31)+2 f′(1)=2(ln3ln3+1)+2=ln32ln3+2+2ln3=ln34ln3+2. Finally, (f−1)′(2)=f′(1)1=ln34ln3+21=4ln3+2ln3.
