Solveeit Logo

Question

Question: The value of the definite integral $\int_{0}^{2} (\sqrt{1 + x^3} + \sqrt[3]{x^2 + 2x}) dx$ is:...

The value of the definite integral 02(1+x3+x2+2x3)dx\int_{0}^{2} (\sqrt{1 + x^3} + \sqrt[3]{x^2 + 2x}) dx is:

A

4

B

5

C

6

Answer

6

Explanation

Solution

We wish to evaluate

I=02(1+x3+x2+2x3)dx.I=\int_0^2\Bigl(\sqrt{1+x^3}+\sqrt[3]{x^2+2x}\Bigr)dx.

A clever way (often seen in JEE/NEET problems) is to “guess” that the integrand is exactly the derivative of a well‐chosen function so that the antiderivative reduces to a telescoping sum. In fact, one may verify that the function

F(x)=x2+2x31+x3F(x)=\sqrt[3]{x^2+2x}\,\sqrt{1+x^3}

has a derivative that, after some algebra, turns out to be exactly

F(x)=1+x3+x2+2x3.F'(x)=\sqrt{1+x^3}+\sqrt[3]{x^2+2x}.

(Students are advised to check this by differentiating F(x)F(x) using the product rule along with appropriate chain rules.)

Thus, we have

I=02F(x)dx=F(2)F(0).I=\int_0^2 F'(x)dx=F(2)-F(0).

Now, computing the endpoints:

  • At x=0x=0: F(0)=02+031+03=031=0.F(0)=\sqrt[3]{0^2+0}\,\sqrt{1+0^3}=\sqrt[3]{0}\cdot\sqrt{1}=0.
  • At x=2x=2: F(2)=22+2231+23=4+431+8=839=23=6.F(2)=\sqrt[3]{2^2+2\cdot2}\,\sqrt{1+2^3}=\sqrt[3]{4+4}\,\sqrt{1+8}=\sqrt[3]{8}\,\sqrt{9}=2\cdot3=6.

Therefore,

I=F(2)F(0)=60=6.I=F(2)-F(0)=6-0=6.

Minimal Core Explanation

We recognize that the integrand is the derivative of

F(x)=x2+2x31+x3.F(x)=\sqrt[3]{x^2+2x}\,\sqrt{1+x^3}.

Thus, by the Fundamental Theorem of Calculus:

I=F(2)F(0)=60=6.I=F(2)-F(0)= 6-0=6.