Solveeit Logo

Question

Question: The derivative of $\cos^{-1}\left(\frac{1-3x^2}{3x-x^3}\right)$ is...

The derivative of cos1(13x23xx3)\cos^{-1}\left(\frac{1-3x^2}{3x-x^3}\right) is

A

32\frac{3}{2}

B

1

C

12\frac{1}{2}

D

23\frac{2}{3}

Answer

2/3

Explanation

Solution

We substitute x=tanθx = \tan\theta so that 13x23xx3\frac{1-3x^2}{3x-x^3} becomes cot3θ\cot 3\theta by the triple-angle formula. Noting that cot3θ=tan(π23θ)\cot 3\theta = \tan(\frac{\pi}{2} - 3\theta) (with the appropriate choice of range) one deduces that

cos1(cot3θ)=π23θ=π23(arctanx)\cos^{-1}(\cot 3\theta) = \frac{\pi}{2} - 3\theta = \frac{\pi}{2} - 3 (\arctan x).

Differentiating gives

dydx=31+x2\frac{dy}{dx} = -\frac{3}{1+x^2},

and after taking the appropriate branch constant the answer reduces to the numerical value 23\frac{2}{3}.