Solveeit Logo

Question

Question: $\lim_{x \to 0} \left( \frac{(e^x-e^{-x}) \sin(x)}{20^x21 - 21^x20 + 1} \right)^{(e^{x-x})}$ is equa...

limx0((exex)sin(x)20x2121x20+1)(exx)\lim_{x \to 0} \left( \frac{(e^x-e^{-x}) \sin(x)}{20^x21 - 21^x20 + 1} \right)^{(e^{x-x})} is equal to

Answer

0

Explanation

Solution

To evaluate the limit limx0((exex)sin(x)20x2121x20+1)(exx)\lim_{x \to 0} \left( \frac{(e^x-e^{-x}) \sin(x)}{20^x21 - 21^x20 + 1} \right)^{(e^{x-x})}, we follow these steps:

  1. Simplify the exponent: The exponent is exxe^{x-x}. exx=e0=1e^{x-x} = e^0 = 1. So the expression simplifies to: limx0((exex)sin(x)20x2121x20+1)1=limx0(exex)sin(x)20x2121x20+1\lim_{x \to 0} \left( \frac{(e^x-e^{-x}) \sin(x)}{20^x21 - 21^x20 + 1} \right)^{1} = \lim_{x \to 0} \frac{(e^x-e^{-x}) \sin(x)}{20^x21 - 21^x20 + 1}

  2. Evaluate the limit of the numerator: Let the numerator be N(x)=(exex)sin(x)N(x) = (e^x-e^{-x}) \sin(x). Substitute x=0x=0 into N(x)N(x): limx0N(x)=(e0e0)sin(0)=(11)0=00=0\lim_{x \to 0} N(x) = (e^0 - e^{-0}) \sin(0) = (1 - 1) \cdot 0 = 0 \cdot 0 = 0

  3. Evaluate the limit of the denominator: Let the denominator be D(x)=20x2121x20+1D(x) = 20^x21 - 21^x20 + 1. Substitute x=0x=0 into D(x)D(x): limx0D(x)=2002121020+1=121120+1=2120+1=2\lim_{x \to 0} D(x) = 20^0 \cdot 21 - 21^0 \cdot 20 + 1 = 1 \cdot 21 - 1 \cdot 20 + 1 = 21 - 20 + 1 = 2

  4. Combine the limits: Since the limit of the numerator is 00 and the limit of the denominator is 22 (which is a non-zero constant), the limit of the fraction is: limx0N(x)D(x)=limx0N(x)limx0D(x)=02=0\lim_{x \to 0} \frac{N(x)}{D(x)} = \frac{\lim_{x \to 0} N(x)}{\lim_{x \to 0} D(x)} = \frac{0}{2} = 0

Thus, the value of the given limit is 00.

Explanation: The exponent exxe^{x-x} simplifies to e0=1e^0 = 1. The problem then reduces to evaluating the limit of a rational function as x0x \to 0. The numerator (exex)sin(x)(e^x-e^{-x})\sin(x) approaches (e0e0)sin(0)=(11)0=0(e^0-e^0)\sin(0) = (1-1)\cdot 0 = 0. The denominator 20x2121x20+120^x21 - 21^x20 + 1 approaches 2002121020+1=121120+1=220^0 \cdot 21 - 21^0 \cdot 20 + 1 = 1 \cdot 21 - 1 \cdot 20 + 1 = 2. Since the numerator approaches 0 and the denominator approaches a non-zero value (2), the limit of the entire expression is 02=0\frac{0}{2} = 0.