Solveeit Logo

Question

Question: Let $(1 + x + x^2)^{30} = \sum_{r=0}^{60} a_r x^r$. If $\alpha a_{21} = \beta a_{20} + \gamma a_{19}...

Let (1+x+x2)30=r=060arxr(1 + x + x^2)^{30} = \sum_{r=0}^{60} a_r x^r. If αa21=βa20+γa19,(α,β,γN)\alpha a_{21} = \beta a_{20} + \gamma a_{19}, (\alpha, \beta, \gamma \in N) then the value of α+β+γ\alpha + \beta + \gamma can be

A

62

B

72

C

82

D

74

Answer

72

Explanation

Solution

The core of the solution involves deriving a recurrence relation between the coefficients of the polynomial expansion (1+x+x2)30=r=060arxr(1 + x + x^2)^{30} = \sum_{r=0}^{60} a_r x^r. This is achieved by differentiating the polynomial and manipulating the resulting equation.

  1. Define P(x)=(1+x+x2)30P(x) = (1 + x + x^2)^{30}.
  2. Differentiate P(x)P(x) to get P(x)=30(1+x+x2)29(1+2x)P'(x) = 30(1 + x + x^2)^{29}(1 + 2x).
  3. Establish the relation P(x)(1+x+x2)=30(1+2x)P(x)P'(x)(1+x+x^2) = 30(1+2x)P(x).
  4. Substitute the series expansions for P(x)P(x) and P(x)P'(x) into this relation: (rarxr1)(1+x+x2)=30(1+2x)(arxr)(\sum r a_r x^{r-1})(1+x+x^2) = 30(1+2x)(\sum a_r x^r).
  5. Equate the coefficients of xnx^n on both sides. The general relation obtained is (n+1)an+1=(30n)an+(61n)an1(n+1)a_{n+1} = (30-n)a_n + (61-n)a_{n-1}.
  6. To match the given form αa21=βa20+γa19\alpha a_{21} = \beta a_{20} + \gamma a_{19}, we set n+1=21n+1=21 (so n=20n=20).
  7. Substituting n=20n=20 yields 21a21=10a20+41a1921 a_{21} = 10 a_{20} + 41 a_{19}.
  8. By comparison, α=21,β=10,γ=41\alpha=21, \beta=10, \gamma=41. These are natural numbers.
  9. Calculate α+β+γ=21+10+41=72\alpha + \beta + \gamma = 21 + 10 + 41 = 72.