Solveeit Logo

Question

Question: If the local maximum value of the function $$f(x) = \left(\frac{\sqrt{3e}}{2\sin x}\right)^{\sin^2 x...

If the local maximum value of the function f(x)=(3e2sinx)sin2x,x(0,π2) is ke,f(x) = \left(\frac{\sqrt{3e}}{2\sin x}\right)^{\sin^2 x}, x \in \left(0, \frac{\pi}{2}\right) \text{ is } \frac{k}{e}, then the value of k is

A

e^{7/8}

B

e^{11/8}

C

e^{9/8}

D

e^{13/8}

Answer

e^{11/8}

Explanation

Solution

Let y=f(x)y = f(x). Taking the natural logarithm, we get lny=sin2xln(3e2sinx)\ln y = \sin^2 x \ln\left(\frac{\sqrt{3e}}{2\sin x}\right). Simplify lny=sin2x(ln(3e)ln(2sinx))=sin2x(12ln(3e)ln2ln(sinx))\ln y = \sin^2 x \left(\ln(\sqrt{3e}) - \ln(2\sin x)\right) = \sin^2 x \left(\frac{1}{2}\ln(3e) - \ln 2 - \ln(\sin x)\right). Differentiate with respect to xx: f(x)f(x)=sin(2x)(12ln3+12ln2ln(sinx))sinxcosx\frac{f'(x)}{f(x)} = \sin(2x) \left(\frac{1}{2}\ln 3 + \frac{1}{2} - \ln 2 - \ln(\sin x)\right) - \sin x \cos x. Setting f(x)=0f'(x)=0 (and since f(x)>0f(x) > 0), we set the term in parentheses to zero after dividing by sinxcosx\sin x \cos x: 2(12ln3+12ln2ln(sinx))1=02\left(\frac{1}{2}\ln 3 + \frac{1}{2} - \ln 2 - \ln(\sin x)\right) - 1 = 0, which simplifies to ln(sin2x)=ln(3/4)\ln(\sin^2 x) = \ln(3/4). Thus, sin2x=3/4\sin^2 x = 3/4. Since x(0,π/2)x \in (0, \pi/2), sinx=3/2\sin x = \sqrt{3}/2, which means x=π/3x = \pi/3. The local maximum value is f(π/3)=(3e2(3/2))3/4=(e)3/4=e3/8f(\pi/3) = \left(\frac{\sqrt{3e}}{2(\sqrt{3}/2)}\right)^{3/4} = (\sqrt{e})^{3/4} = e^{3/8}. Given this value is k/ek/e, we have e3/8=k/ee^{3/8} = k/e, so k=ee3/8=e11/8k = e \cdot e^{3/8} = e^{11/8}.