Solveeit Logo

Question

Question: A current of 200 µA deflects the coil of a moving coil galvanometer through 60°. The current to caus...

A current of 200 µA deflects the coil of a moving coil galvanometer through 60°. The current to cause deflection through π10\frac{\pi}{10} radian is:

A

30 μΑ

B

120 μΑ

C

60 μΑ

D

180 μΑ

Answer

60 μΑ

Explanation

Solution

For a moving coil galvanometer, the deflection (θ\theta) is directly proportional to the current (II) passing through it.

So, IθI \propto \theta, or I=kθI = k\theta, where kk is the galvanometer constant.

Given: Initial current I1=200μAI_1 = 200 \, \mu A Initial deflection θ1=60\theta_1 = 60^\circ Target deflection θ2=π10\theta_2 = \frac{\pi}{10} radian

First, convert θ1\theta_1 to radians for consistency: θ1=60=60×π180radian=π3radian\theta_1 = 60^\circ = 60 \times \frac{\pi}{180} \, \text{radian} = \frac{\pi}{3} \, \text{radian}.

Using the proportionality: I1θ1=I2θ2\frac{I_1}{\theta_1} = \frac{I_2}{\theta_2} I2=I1(θ2θ1)I_2 = I_1 \left(\frac{\theta_2}{\theta_1}\right) I2=200μA×(π10π3)I_2 = 200 \, \mu A \times \left(\frac{\frac{\pi}{10}}{\frac{\pi}{3}}\right) I2=200μA×(π10×3π)I_2 = 200 \, \mu A \times \left(\frac{\pi}{10} \times \frac{3}{\pi}\right) I2=200μA×310I_2 = 200 \, \mu A \times \frac{3}{10} I2=20×3μAI_2 = 20 \times 3 \, \mu A I2=60μAI_2 = 60 \, \mu A