Solveeit Logo

Question

Question: $\underset{y\to\infty}{Lt} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=$...

Lty1+1+y42y4=\underset{y\to\infty}{Lt} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=

A

424\sqrt{2}

B

142\frac{1}{4\sqrt{2}}

C

2\sqrt{2}

D

0

Answer

0

Explanation

Solution

Let x=y4x = y^4. As yy \to \infty, xx \to \infty. The limit becomes Ltx1+1+x2x\underset{x\to\infty}{Lt} \frac{\sqrt{1+\sqrt{1+x}}-\sqrt{2}}{x}. Using rationalization: Ltx(1+1+x2)(1+1+x+2)x(1+1+x+2)\underset{x\to\infty}{Lt} \frac{(\sqrt{1+\sqrt{1+x}}-\sqrt{2})(\sqrt{1+\sqrt{1+x}}+\sqrt{2})}{x(\sqrt{1+\sqrt{1+x}}+\sqrt{2})} =Ltx1+1+x2x(1+1+x+2)= \underset{x\to\infty}{Lt} \frac{1+\sqrt{1+x}-2}{x(\sqrt{1+\sqrt{1+x}}+\sqrt{2})} =Ltx1+x1x(1+1+x+2)= \underset{x\to\infty}{Lt} \frac{\sqrt{1+x}-1}{x(\sqrt{1+\sqrt{1+x}}+\sqrt{2})} For large xx, 1+xx\sqrt{1+x} \approx \sqrt{x} and 1+1+xx=x1/4\sqrt{1+\sqrt{1+x}} \approx \sqrt{\sqrt{x}} = x^{1/4}. The expression becomes approximately Ltxxx(x1/4+2)Ltxx1/2x5/4=Ltxx3/4=0\underset{x\to\infty}{Lt} \frac{\sqrt{x}}{x(x^{1/4}+\sqrt{2})} \approx \underset{x\to\infty}{Lt} \frac{x^{1/2}}{x^{5/4}} = \underset{x\to\infty}{Lt} x^{-3/4} = 0.