Solveeit Logo

Question

Question: |\overline{A}+\overline{B}|=|\overline{A}-\overline{B}|$ then the angle between $\overline{A}, \over...

|\overline{A}+\overline{B}|=|\overline{A}-\overline{B}|thentheanglebetweenthen the angle between\overline{A}, \overline{B}$ is

A

1200120^0

B

000^0

C

90090^0

D

1800180^0

Answer

90 degrees

Explanation

Solution

Given the condition A+B=AB|\overline{A}+\overline{B}|=|\overline{A}-\overline{B}|. Let θ\theta be the angle between vectors A\overline{A} and B\overline{B}.

The magnitude of the sum of two vectors is given by A+B=A2+B2+2ABcosθ|\overline{A}+\overline{B}| = \sqrt{|\overline{A}|^2 + |\overline{B}|^2 + 2|\overline{A}||\overline{B}|\cos\theta}.

The magnitude of the difference of two vectors is given by AB=A2+B22ABcosθ|\overline{A}-\overline{B}| = \sqrt{|\overline{A}|^2 + |\overline{B}|^2 - 2|\overline{A}||\overline{B}|\cos\theta}.

The given condition is A+B=AB|\overline{A}+\overline{B}|=|\overline{A}-\overline{B}|. Squaring both sides, we get: A+B2=AB2|\overline{A}+\overline{B}|^2=|\overline{A}-\overline{B}|^2

Substitute the formulas for the squared magnitudes: A2+B2+2ABcosθ=A2+B22ABcosθ|\overline{A}|^2 + |\overline{B}|^2 + 2|\overline{A}||\overline{B}|\cos\theta = |\overline{A}|^2 + |\overline{B}|^2 - 2|\overline{A}||\overline{B}|\cos\theta

Let A=AA = |\overline{A}| and B=BB = |\overline{B}|. A2+B2+2ABcosθ=A2+B22ABcosθA^2 + B^2 + 2AB\cos\theta = A^2 + B^2 - 2AB\cos\theta

Subtract A2+B2A^2 + B^2 from both sides: 2ABcosθ=2ABcosθ2AB\cos\theta = -2AB\cos\theta

Add 2ABcosθ2AB\cos\theta to both sides: 2ABcosθ+2ABcosθ=02AB\cos\theta + 2AB\cos\theta = 0 4ABcosθ=04AB\cos\theta = 0

This equation must hold. Assuming that A\overline{A} and B\overline{B} are non-null vectors, their magnitudes AA and BB are non-zero (A0A \neq 0 and B0B \neq 0). In this case, we can divide both sides by 4AB4AB: cosθ=0\cos\theta = 0

The angle θ\theta between two vectors is conventionally taken to be in the range [0,180][0^\circ, 180^\circ]. The value of θ\theta in this range for which cosθ=0\cos\theta = 0 is θ=90\theta = 90^\circ.