Solveeit Logo

Question

Question: Let $A=[a_{ij}]_{n \times n}$ such that $a_{ij}=\frac{(-1)^i(2i^2+1)}{4j^4+1}$, then value of $1+\li...

Let A=[aij]n×nA=[a_{ij}]_{n \times n} such that aij=(1)i(2i2+1)4j4+1a_{ij}=\frac{(-1)^i(2i^2+1)}{4j^4+1}, then value of 1+limn1+\lim_{n \to \infty}(trace A) is

A

1/2

B

-1/2

C

1

D

0

Answer

1/2

Explanation

Solution

The trace of matrix AA is the sum of its diagonal elements aiia_{ii}. We need to find limni=1naii\lim_{n \to \infty} \sum_{i=1}^n a_{ii}, where aii=(1)i(2i2+1)4i4+1a_{ii} = \frac{(-1)^i(2i^2+1)}{4i^4+1}. The fraction 2i2+14i4+1\frac{2i^2+1}{4i^4+1} can be decomposed as 12(12i22i+1+12i2+2i+1)\frac{1}{2}\left(\frac{1}{2i^2-2i+1} + \frac{1}{2i^2+2i+1}\right). Let f(i)=12i22i+1f(i) = \frac{1}{2i^2-2i+1}. Then f(i+1)=12i2+2i+1f(i+1) = \frac{1}{2i^2+2i+1}. So, aii=(1)i2(f(i)+f(i+1))a_{ii} = \frac{(-1)^i}{2}(f(i) + f(i+1)). The sum i=1aii=12i=1(1)i(f(i)+f(i+1))\sum_{i=1}^{\infty} a_{ii} = \frac{1}{2} \sum_{i=1}^{\infty} (-1)^i(f(i) + f(i+1)). The partial sum Sn=12i=1n(1)i(f(i)+f(i+1))S_n = \frac{1}{2} \sum_{i=1}^n (-1)^i(f(i) + f(i+1)) telescopes to 12(f(1)+(1)nf(n+1))\frac{1}{2}(-f(1) + (-1)^n f(n+1)). As nn \to \infty, f(n+1)0f(n+1) \to 0, so limnSn=12(f(1))\lim_{n \to \infty} S_n = \frac{1}{2}(-f(1)). f(1)=12(1)22(1)+1=1f(1) = \frac{1}{2(1)^2-2(1)+1} = 1. Thus, limn(trace A)=12(1)=12\lim_{n \to \infty} (\text{trace } A) = \frac{1}{2}(-1) = -\frac{1}{2}. The required value is 1+limn(trace A)=112=121 + \lim_{n \to \infty} (\text{trace } A) = 1 - \frac{1}{2} = \frac{1}{2}.