Question
Question: Let $A=[a_{ij}]_{n \times n}$ such that $a_{ij}=\frac{(-1)^i(2i^2+1)}{4j^4+1}$, then value of $1+\li...
Let A=[aij]n×n such that aij=4j4+1(−1)i(2i2+1), then value of 1+limn→∞(trace A) is

A
1/2
B
-1/2
C
1
D
0
Answer
1/2
Explanation
Solution
The trace of matrix A is the sum of its diagonal elements aii. We need to find limn→∞∑i=1naii, where aii=4i4+1(−1)i(2i2+1). The fraction 4i4+12i2+1 can be decomposed as 21(2i2−2i+11+2i2+2i+11). Let f(i)=2i2−2i+11. Then f(i+1)=2i2+2i+11. So, aii=2(−1)i(f(i)+f(i+1)). The sum ∑i=1∞aii=21∑i=1∞(−1)i(f(i)+f(i+1)). The partial sum Sn=21∑i=1n(−1)i(f(i)+f(i+1)) telescopes to 21(−f(1)+(−1)nf(n+1)). As n→∞, f(n+1)→0, so limn→∞Sn=21(−f(1)). f(1)=2(1)2−2(1)+11=1. Thus, limn→∞(trace A)=21(−1)=−21. The required value is 1+limn→∞(trace A)=1−21=21.