Solveeit Logo

Question

Question: Let $a_0 = 0, a_1 = 2$ and the sequence defined recursively by $a_{n+1} = \sqrt{2-\frac{a_{n-1}}{a_n...

Let a0=0,a1=2a_0 = 0, a_1 = 2 and the sequence defined recursively by an+1=2an1ana_{n+1} = \sqrt{2-\frac{a_{n-1}}{a_n}} for n1n \ge 1. Find

limn2nan\lim_{n \to \infty} 2^n \cdot a_n

A

B

C

D

π

Answer

Explanation

Solution

The given sequence is defined by a0=0a_0 = 0, a1=2a_1 = 2, and an+1=2an1ana_{n+1} = \sqrt{2-\frac{a_{n-1}}{a_n}} for n1n \ge 1.

First, let's compute the first few terms of the sequence: a0=0a_0 = 0 a1=2a_1 = 2 For n=1n=1: a2=2a0a1=202=2a_2 = \sqrt{2 - \frac{a_0}{a_1}} = \sqrt{2 - \frac{0}{2}} = \sqrt{2}. For n=2n=2: a3=2a1a2=222=22a_3 = \sqrt{2 - \frac{a_1}{a_2}} = \sqrt{2 - \frac{2}{\sqrt{2}}} = \sqrt{2 - \sqrt{2}}.

We observe a pattern related to trigonometric functions. Let's try to express ana_n in the form 2sin(θn)2\sin(\theta_n): a1=2=2sin(π/2)a_1 = 2 = 2\sin(\pi/2), so θ1=π/2\theta_1 = \pi/2. a2=2=2(2/2)=2sin(π/4)a_2 = \sqrt{2} = 2(\sqrt{2}/2) = 2\sin(\pi/4), so θ2=π/4\theta_2 = \pi/4. a3=22=2224=212/22=21cos(π/4)2a_3 = \sqrt{2-\sqrt{2}} = 2\sqrt{\frac{2-\sqrt{2}}{4}} = 2\sqrt{\frac{1-\sqrt{2}/2}{2}} = 2\sqrt{\frac{1-\cos(\pi/4)}{2}}. Using the half-angle identity sin(x/2)=(1cosx)/2\sin(x/2) = \sqrt{(1-\cos x)/2}, we get a3=2sin(π/8)a_3 = 2\sin(\pi/8), so θ3=π/8\theta_3 = \pi/8.

The pattern suggests that an=2sin(π2n)a_n = 2\sin\left(\frac{\pi}{2^n}\right). Let's verify this formula for a0a_0: a0=2sin(π20)=2sin(π)=0a_0 = 2\sin\left(\frac{\pi}{2^0}\right) = 2\sin(\pi) = 0, which matches the given value.

Now, we verify if this formula satisfies the recurrence relation an+1=2an1ana_{n+1} = \sqrt{2-\frac{a_{n-1}}{a_n}}. Substitute ak=2sin(π2k)a_k = 2\sin\left(\frac{\pi}{2^k}\right) into the right-hand side (RHS) of the recurrence: RHS =22sin(π2n1)2sin(π2n)=2sin(π2n1)sin(π2n)= \sqrt{2 - \frac{2\sin(\frac{\pi}{2^{n-1}})}{2\sin(\frac{\pi}{2^n})}} = \sqrt{2 - \frac{\sin(\frac{\pi}{2^{n-1}})}{\sin(\frac{\pi}{2^n})}}. Let x=π2nx = \frac{\pi}{2^n}. Then π2n1=2x\frac{\pi}{2^{n-1}} = 2x and π2n+1=x/2\frac{\pi}{2^{n+1}} = x/2. RHS =2sin(2x)sinx= \sqrt{2 - \frac{\sin(2x)}{\sin x}}. Using the double-angle identity sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x: RHS =22sinxcosxsinx= \sqrt{2 - \frac{2\sin x \cos x}{\sin x}}. Since n1n \ge 1, x=π2nx = \frac{\pi}{2^n} is in (0,π/2](0, \pi/2], so sinx0\sin x \ne 0. Thus, we can simplify: RHS =22cosx=2(1cosx)= \sqrt{2 - 2\cos x} = \sqrt{2(1-\cos x)}. Using the half-angle identity 1cosx=2sin2(x/2)1-\cos x = 2\sin^2(x/2): RHS =2(2sin2(x/2))=4sin2(x/2)=2sin(x/2)= \sqrt{2(2\sin^2(x/2))} = \sqrt{4\sin^2(x/2)} = 2|\sin(x/2)|. Since x=π2nx = \frac{\pi}{2^n} and n1n \ge 1, x/2=π2n+1x/2 = \frac{\pi}{2^{n+1}} is in (0,π/4](0, \pi/4]. In this range, sin(x/2)\sin(x/2) is positive. So, RHS =2sin(x/2)=2sin(π2n+1)= 2\sin(x/2) = 2\sin\left(\frac{\pi}{2^{n+1}}\right). This is exactly an+1a_{n+1} according to our formula. Therefore, an=2sin(π2n)a_n = 2\sin\left(\frac{\pi}{2^n}\right) is the correct general term for the sequence.

Finally, we need to find the limit: limn2nan\lim_{n \to \infty} 2^n \cdot a_n. Substitute an=2sin(π2n)a_n = 2\sin\left(\frac{\pi}{2^n}\right): limn2n2sin(π2n)\lim_{n \to \infty} 2^n \cdot 2\sin\left(\frac{\pi}{2^n}\right). Let y=π2ny = \frac{\pi}{2^n}. As nn \to \infty, 2n2^n \to \infty, so y0y \to 0. The expression becomes: limy0πy2sin(y)=2πlimy0sinyy\lim_{y \to 0} \frac{\pi}{y} \cdot 2\sin(y) = 2\pi \lim_{y \to 0} \frac{\sin y}{y}. Using the standard limit limy0sinyy=1\lim_{y \to 0} \frac{\sin y}{y} = 1: The limit is 2π1=2π2\pi \cdot 1 = 2\pi.

Explanation of the solution:

  1. Calculate Initial Terms: Compute a2=2a_2 = \sqrt{2} and a3=22a_3 = \sqrt{2-\sqrt{2}} using the given recurrence and initial values.
  2. Identify Pattern: Observe that a1=2sin(π/2)a_1=2\sin(\pi/2), a2=2sin(π/4)a_2=2\sin(\pi/4), a3=2sin(π/8)a_3=2\sin(\pi/8). This suggests the general term an=2sin(π/2n)a_n = 2\sin(\pi/2^n). Verify this for a0a_0.
  3. Verify Recurrence: Substitute ak=2sin(π/2k)a_k = 2\sin(\pi/2^k) into the given recurrence relation an+1=2an1ana_{n+1} = \sqrt{2-\frac{a_{n-1}}{a_n}}. Use trigonometric identities sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x and 1cosx=2sin2(x/2)1-\cos x = 2\sin^2(x/2) to show that the RHS simplifies to 2sin(π/2n+1)2\sin(\pi/2^{n+1}), which is an+1a_{n+1}.
  4. Evaluate Limit: Substitute an=2sin(π/2n)a_n = 2\sin(\pi/2^n) into the expression limn2nan\lim_{n \to \infty} 2^n \cdot a_n. Let y=π/2ny = \pi/2^n. As nn \to \infty, y0y \to 0. The limit becomes limy0πy2siny=2πlimy0sinyy\lim_{y \to 0} \frac{\pi}{y} \cdot 2\sin y = 2\pi \lim_{y \to 0} \frac{\sin y}{y}.
  5. Apply Standard Limit: Use limy0sinyy=1\lim_{y \to 0} \frac{\sin y}{y} = 1 to find the final limit as 2π2\pi.