Solveeit Logo

Question

Question: $\int \frac{sin^2x}{(1+cosx)}dx = ?$...

sin2x(1+cosx)dx=?\int \frac{sin^2x}{(1+cosx)}dx = ?

Answer

xsinx+Cx - \sin x + C

Explanation

Solution

To evaluate the integral sin2x(1+cosx)dx\int \frac{\sin^2x}{(1+\cos x)}dx, we use trigonometric identities.

The fundamental trigonometric identity is sin2x+cos2x=1\sin^2x + \cos^2x = 1, which implies sin2x=1cos2x\sin^2x = 1 - \cos^2x. Substitute this into the integral: sin2x(1+cosx)dx=1cos2x(1+cosx)dx\int \frac{\sin^2x}{(1+\cos x)}dx = \int \frac{1 - \cos^2x}{(1+\cos x)}dx Next, we use the algebraic identity a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b). Here, a=1a=1 and b=cosxb=\cos x. So, 1cos2x=(1cosx)(1+cosx)1 - \cos^2x = (1 - \cos x)(1 + \cos x). Substitute this expression back into the integral: (1cosx)(1+cosx)(1+cosx)dx\int \frac{(1 - \cos x)(1 + \cos x)}{(1+\cos x)}dx Assuming 1+cosx01+\cos x \neq 0 (i.e., x(2n+1)πx \neq (2n+1)\pi for integer nn), we can cancel the term (1+cosx)(1+\cos x) from the numerator and the denominator: (1cosx)dx\int (1 - \cos x)dx Now, we integrate term by term: 1dxcosxdx\int 1 dx - \int \cos x dx The integral of 11 with respect to xx is xx. The integral of cosx\cos x with respect to xx is sinx\sin x. Therefore, the result of the integration is: xsinx+Cx - \sin x + C where C is the constant of integration.

Explanation of the solution: The integral is simplified by using the identity sin2x=1cos2x\sin^2x = 1 - \cos^2x. This expression is then factored as a difference of squares, (1cosx)(1+cosx)(1-\cos x)(1+\cos x). The (1+cosx)(1+\cos x) term cancels out, leaving a simpler integral (1cosx)dx\int (1-\cos x)dx. Integrating term by term yields xsinx+Cx - \sin x + C.