Solveeit Logo

Question

Question: If $f(x+1)=(-1)^{n+1}x-2f(x)$ for $x \in N$ and $f(1)=f(1986)$, Then sum of digits of $(f(1)+f(2)+.....

If f(x+1)=(1)n+1x2f(x)f(x+1)=(-1)^{n+1}x-2f(x) for xNx \in N and f(1)=f(1986)f(1)=f(1986), Then sum of digits of (f(1)+f(2)+...+f(1985))(f(1)+f(2)+...+f(1985)) is

A

26

B

7

C

18

D

20

Answer

26

Explanation

Solution

Let the given functional equation be f(x+1)=Cx2f(x)f(x+1) = C \cdot x - 2f(x), where C=(1)n+1C = (-1)^{n+1} is a constant. We are given f(1)=f(1986)f(1) = f(1986). We need to find the sum of digits of S=x=11985f(x)S = \sum_{x=1}^{1985} f(x).

Summing the functional equation from x=1x=1 to 19851985: x=11985f(x+1)+2x=11985f(x)=x=11985Cx\sum_{x=1}^{1985} f(x+1) + 2 \sum_{x=1}^{1985} f(x) = \sum_{x=1}^{1985} C \cdot x The first term is x=11985f(x+1)=f(2)+f(3)++f(1986)\sum_{x=1}^{1985} f(x+1) = f(2) + f(3) + \dots + f(1986). This can be written as (f(1)+f(2)++f(1985)+f(1986))f(1)=S+f(1986)f(1)(f(1) + f(2) + \dots + f(1985) + f(1986)) - f(1) = S + f(1986) - f(1). The equation becomes: (S+f(1986)f(1))+2S=Cx=11985x(S + f(1986) - f(1)) + 2S = C \sum_{x=1}^{1985} x Given f(1)=f(1986)f(1) = f(1986), the term f(1986)f(1)=0f(1986) - f(1) = 0. So, the equation simplifies to: 3S=Cx=11985x3S = C \sum_{x=1}^{1985} x The sum of the first 1985 natural numbers is 1985(1985+1)2=198519862=1985993\frac{1985 \cdot (1985+1)}{2} = \frac{1985 \cdot 1986}{2} = 1985 \cdot 993. 3S=C(1985993)3S = C \cdot (1985 \cdot 993) S=C19859933S = C \cdot \frac{1985 \cdot 993}{3} S=C(1985331)S = C \cdot (1985 \cdot 331) Calculating 19853311985 \cdot 331: 1985×331=6570351985 \times 331 = 657035. So, S=C657035S = C \cdot 657035.

Since C=(1)n+1C = (-1)^{n+1}, CC can be either 11 or 1-1. If C=1C = 1, then S=657035S = 657035. The sum of digits is 6+5+7+0+3+5=266+5+7+0+3+5 = 26. If C=1C = -1, then S=657035S = -657035. The sum of digits of a negative number is usually taken for its absolute value. The sum of digits of S=657035|S| = 657035 is 6+5+7+0+3+5=266+5+7+0+3+5 = 26.

In either case, the sum of digits is 26.

The final answer is 26\boxed{26}.