Solveeit Logo

Question

Question: 52. Binding energy per nucleon vs mass number cure for nuclei is shown in the figure. W, X, Y and Z ...

  1. Binding energy per nucleon vs mass number cure for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is:
A

Y \rightarrow 2Z

B

W \rightarrow X+Z

C

W \rightarrow 2Y

D

X \rightarrow Y+Z

Answer

C

Explanation

Solution

Energy is released in a nuclear reaction if the total binding energy of the products is greater than the total binding energy of the reactants. The total binding energy of a nucleus is given by the product of its mass number (AA) and the binding energy per nucleon (EbE_b).

From the graph for question 52:

  • Nucleus Y: Mass number 60\approx 60, Binding energy per nucleon (EbYE_{bY}) 8.5\approx 8.5 MeV.
  • Nucleus X: Mass number 90\approx 90, Binding energy per nucleon (EbXE_{bX}) 8.0\approx 8.0 MeV.
  • Nucleus W: Mass number 120\approx 120, Binding energy per nucleon (EbWE_{bW}) 7.5\approx 7.5 MeV.
  • Nucleus Z: Mass number 30\approx 30, Binding energy per nucleon (EbZE_{bZ}) 5.0\approx 5.0 MeV.

Let's analyze each option: (A) Y2ZY \rightarrow 2Z: Mass number conservation: 602×30=6060 \rightarrow 2 \times 30 = 60. Total binding energy of Y = 60×EbY60×8.5=51060 \times E_{bY} \approx 60 \times 8.5 = 510 MeV. Total binding energy of 2Z = 2×(30×EbZ)2×(30×5.0)=3002 \times (30 \times E_{bZ}) \approx 2 \times (30 \times 5.0) = 300 MeV. Energy released = B.E.productsB.E.reactants=300510=210B.E._{products} - B.E._{reactants} = 300 - 510 = -210 MeV. (Energy absorbed)

(B) WX+ZW \rightarrow X+Z: Mass number conservation: 12090+30=120120 \rightarrow 90 + 30 = 120. Total binding energy of W = 120×EbW120×7.5=900120 \times E_{bW} \approx 120 \times 7.5 = 900 MeV. Total binding energy of X+Z = (90×EbX)+(30×EbZ)(90×8.0)+(30×5.0)=720+150=870(90 \times E_{bX}) + (30 \times E_{bZ}) \approx (90 \times 8.0) + (30 \times 5.0) = 720 + 150 = 870 MeV. Energy released = 870900=30870 - 900 = -30 MeV. (Energy absorbed)

(C) W2YW \rightarrow 2Y: Mass number conservation: 1202×60=120120 \rightarrow 2 \times 60 = 120. Total binding energy of W = 120×EbW120×7.5=900120 \times E_{bW} \approx 120 \times 7.5 = 900 MeV. Total binding energy of 2Y = 2×(60×EbY)2×(60×8.5)=2×510=10202 \times (60 \times E_{bY}) \approx 2 \times (60 \times 8.5) = 2 \times 510 = 1020 MeV. Energy released = 1020900=1201020 - 900 = 120 MeV. (Energy released)

(D) XY+ZX \rightarrow Y+Z: Mass number conservation: 9060+30=9090 \rightarrow 60 + 30 = 90. Total binding energy of X = 90×EbX90×8.0=72090 \times E_{bX} \approx 90 \times 8.0 = 720 MeV. Total binding energy of Y+Z = (60×EbY)+(30×EbZ)(60×8.5)+(30×5.0)=510+150=660(60 \times E_{bY}) + (30 \times E_{bZ}) \approx (60 \times 8.5) + (30 \times 5.0) = 510 + 150 = 660 MeV. Energy released = 660720=60660 - 720 = -60 MeV. (Energy absorbed)

The process that releases energy is W2YW \rightarrow 2Y. This is a fission process where a heavier nucleus (W) splits into lighter nuclei (Y), and the products (Y) are more tightly bound (higher binding energy per nucleon) than the reactant (W).