Solveeit Logo

Question

Question: At what temperature (in °C), the graph between $\left(\frac{1}{du} \cdot \frac{dN}{N}\right)$ (Y-axi...

At what temperature (in °C), the graph between (1dudNN)\left(\frac{1}{du} \cdot \frac{dN}{N}\right) (Y-axis) and u (X-axis) will be maximum at 200 ms⁻¹ for a sample of ideal gas (molar mass = 41.57 gm mol⁻¹)?

Answer

-173.15 °C

Explanation

Solution

The term (1dudNN)\left(\frac{1}{du} \cdot \frac{dN}{N}\right) represents the Maxwell-Boltzmann distribution function for molecular speeds. The peak of this distribution occurs at the most probable speed (umpu_{mp}). We are given ump=200 ms1u_{mp} = 200 \text{ ms}^{-1}. The formula for the most probable speed is ump=2RTMu_{mp} = \sqrt{\frac{2RT}{M}}. Rearranging for temperature TT: T=Mump22RT = \frac{M u_{mp}^2}{2R}. Given: M=41.57 gm mol1=41.57×103 kg mol1M = 41.57 \text{ gm mol}^{-1} = 41.57 \times 10^{-3} \text{ kg mol}^{-1}, ump=200 ms1u_{mp} = 200 \text{ ms}^{-1}, R=8.314 J mol1 K1R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}. T=(41.57×103)×(200)22×8.314100 KT = \frac{(41.57 \times 10^{-3}) \times (200)^2}{2 \times 8.314} \approx 100 \text{ K}. Converting to °C: T(°C)=100273.15=173.15 °CT(\text{°C}) = 100 - 273.15 = -173.15 \text{ °C}.