Solveeit Logo

Question

Question: The value of determining $$ \begin{vmatrix} \cos (\theta + \phi) & -\sin (\theta + \phi) & \cos 2\ph...

The value of determining

cos(θ+ϕ)sin(θ+ϕ)cos2ϕsinθcosθsinϕcosθsinθcosϕ\begin{vmatrix} \cos (\theta + \phi) & -\sin (\theta + \phi) & \cos 2\phi \\ \sin \theta & \cos \theta & \sin \phi \\ -\cos \theta & \sin \theta & \cos \phi \end{vmatrix}

is:

Answer

1+cos2ϕ1 + \cos 2\phi

Explanation

Solution

We expand the determinant along the first row: D=cos(θ+ϕ)cosθsinϕsinθcosϕ(sin(θ+ϕ))sinθsinϕcosθcosϕ+cos2ϕsinθcosθcosθsinθD = \cos (\theta + \phi) \begin{vmatrix} \cos \theta & \sin \phi \\ \sin \theta & \cos \phi \end{vmatrix} - (-\sin (\theta + \phi)) \begin{vmatrix} \sin \theta & \sin \phi \\ -\cos \theta & \cos \phi \end{vmatrix} + \cos 2\phi \begin{vmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{vmatrix}

Evaluating the 2x2 determinants:

  1. cosθsinϕsinθcosϕ=(cosθ)(cosϕ)(sinϕ)(sinθ)=cos(θ+ϕ)\begin{vmatrix} \cos \theta & \sin \phi \\ \sin \theta & \cos \phi \end{vmatrix} = (\cos \theta)(\cos \phi) - (\sin \phi)(\sin \theta) = \cos(\theta + \phi)
  2. sinθsinϕcosθcosϕ=(sinθ)(cosϕ)(sinϕ)(cosθ)=sinθcosϕ+cosθsinϕ=sin(θ+ϕ)\begin{vmatrix} \sin \theta & \sin \phi \\ -\cos \theta & \cos \phi \end{vmatrix} = (\sin \theta)(\cos \phi) - (\sin \phi)(-\cos \theta) = \sin \theta \cos \phi + \cos \theta \sin \phi = \sin(\theta + \phi)
  3. sinθcosθcosθsinθ=(sinθ)(sinθ)(cosθ)(cosθ)=sin2θ+cos2θ=1\begin{vmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{vmatrix} = (\sin \theta)(\sin \theta) - (\cos \theta)(-\cos \theta) = \sin^2 \theta + \cos^2 \theta = 1

Substituting these values back: D=cos(θ+ϕ)[cos(θ+ϕ)]+sin(θ+ϕ)[sin(θ+ϕ)]+cos2ϕ[1]D = \cos (\theta + \phi) [\cos(\theta + \phi)] + \sin (\theta + \phi) [\sin(\theta + \phi)] + \cos 2\phi [1] D=cos2(θ+ϕ)+sin2(θ+ϕ)+cos2ϕD = \cos^2 (\theta + \phi) + \sin^2 (\theta + \phi) + \cos 2\phi Using the identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1: D=1+cos2ϕD = 1 + \cos 2\phi This can also be written as 2cos2ϕ2\cos^2 \phi.