Question
Question: The value of determining $$ \begin{vmatrix} \cos (\theta + \phi) & -\sin (\theta + \phi) & \cos 2\ph...
The value of determining
cos(θ+ϕ)sinθ−cosθ−sin(θ+ϕ)cosθsinθcos2ϕsinϕcosϕis:

Answer
1+cos2ϕ
Explanation
Solution
We expand the determinant along the first row: D=cos(θ+ϕ)cosθsinθsinϕcosϕ−(−sin(θ+ϕ))sinθ−cosθsinϕcosϕ+cos2ϕsinθ−cosθcosθsinθ
Evaluating the 2x2 determinants:
- cosθsinθsinϕcosϕ=(cosθ)(cosϕ)−(sinϕ)(sinθ)=cos(θ+ϕ)
- sinθ−cosθsinϕcosϕ=(sinθ)(cosϕ)−(sinϕ)(−cosθ)=sinθcosϕ+cosθsinϕ=sin(θ+ϕ)
- sinθ−cosθcosθsinθ=(sinθ)(sinθ)−(cosθ)(−cosθ)=sin2θ+cos2θ=1
Substituting these values back: D=cos(θ+ϕ)[cos(θ+ϕ)]+sin(θ+ϕ)[sin(θ+ϕ)]+cos2ϕ[1] D=cos2(θ+ϕ)+sin2(θ+ϕ)+cos2ϕ Using the identity cos2x+sin2x=1: D=1+cos2ϕ This can also be written as 2cos2ϕ.