Solveeit Logo

Question

Question: The function $f(x)=2x^3-3x^2-12x+4$, has...

The function f(x)=2x33x212x+4f(x)=2x^3-3x^2-12x+4, has

A

2 points of local maxima

B

2 points of local minimum

C

One maxima and one minima

D

No maxima nor minima

Answer

One maxima and one minima

Explanation

Solution

To find the local maxima and minima of the function f(x)=2x33x212x+4f(x)=2x^3-3x^2-12x+4, we follow these steps:

  1. Find the first derivative of the function, f(x)f'(x): f(x)=2x33x212x+4f(x) = 2x^3-3x^2-12x+4 f(x)=ddx(2x3)ddx(3x2)ddx(12x)+ddx(4)f'(x) = \frac{d}{dx}(2x^3) - \frac{d}{dx}(3x^2) - \frac{d}{dx}(12x) + \frac{d}{dx}(4) f(x)=6x26x12f'(x) = 6x^2 - 6x - 12

  2. Find the critical points by setting f(x)=0f'(x) = 0: 6x26x12=06x^2 - 6x - 12 = 0 Divide the entire equation by 6: x2x2=0x^2 - x - 2 = 0 Factor the quadratic equation: (x2)(x+1)=0(x-2)(x+1) = 0 This gives us two critical points: x=2x = 2 and x=1x = -1.

  3. Use the second derivative test to classify the critical points: First, find the second derivative, f(x)f''(x): f(x)=6x26x12f'(x) = 6x^2 - 6x - 12 f(x)=ddx(6x2)ddx(6x)ddx(12)f''(x) = \frac{d}{dx}(6x^2) - \frac{d}{dx}(6x) - \frac{d}{dx}(12) f(x)=12x6f''(x) = 12x - 6

    Now, evaluate f(x)f''(x) at each critical point:

    • For x=1x = -1: f(1)=12(1)6=126=18f''(-1) = 12(-1) - 6 = -12 - 6 = -18 Since f(1)<0f''(-1) < 0, there is a local maximum at x=1x = -1.

    • For x=2x = 2: f(2)=12(2)6=246=18f''(2) = 12(2) - 6 = 24 - 6 = 18 Since f(2)>0f''(2) > 0, there is a local minimum at x=2x = 2.

Conclusion:

The function f(x)f(x) has one local maximum (at x=1x=-1) and one local minimum (at x=2x=2).