Question
Question: Let $I = \int_{0}^{2} [|x^{2} - 5x + 4| + [\sin \frac{3\pi}{2}x]] dx$; (where [.] represents greates...
Let I=∫02[∣x2−5x+4∣+[sin23πx]]dx; (where [.] represents greatest integer function) then I+2/3 is

213−17−21−25−13
213+17−21−5−13
214−17−21+5−13
214−17−21+25−13
The provided options do not match the calculated answer.
Solution
The integral is I=∫02[∣x2−5x+4∣+[sin23πx]]dx.
-
Analyze ∣x2−5x+4∣: The roots of x2−5x+4=0 are x=1 and x=4. For x∈[0,1], x2−5x+4≥0, so ∣x2−5x+4∣=x2−5x+4. For x∈(1,2], x2−5x+4<0, so ∣x2−5x+4∣=−(x2−5x+4)=−x2+5x−4.
-
Analyze [sin23πx]: The period of sin23πx is T=3π/22π=34.
- For x∈[0,2/3), 23πx∈[0,π), so sin(23πx)∈[0,1), which means [sin23πx]=0.
- For x∈[2/3,4/3), 23πx∈[π,2π), so sin(23πx)∈[−1,0), which means [sin23πx]=−1.
- For x∈[4/3,2], 23πx∈[2π,3π]. sin(23πx) ranges from 0 to 1. For integration purposes, we consider [sin23πx]=0 since the value is 1 only at a single point (x=5/3).
-
Evaluate the integral by splitting intervals:
- ∫02/3(x2−5x+4+0)dx=[3x3−25x2+4x]02/3=81134.
- ∫2/31(x2−5x+4−1)dx=∫2/31(x2−5x+3)dx=[3x3−25x2+3x]2/31=−16225.
- ∫14/3(−x2+5x−4−1)dx=∫14/3(−x2+5x−5)dx=[−3x3+25x2−5x]14/3=−16229.
- ∫4/32(−x2+5x−4+0)dx=[−3x3+25x2−4x]4/32=8182.
-
Sum the results: I=81134−16225−16229+8182=162268−25−29+164=162378=37.
-
Calculate I+2/3: I+32=37+32=39=3.
Since 3 is not among the options and the options contain square roots, there is likely an error in the question or the provided options. Based on the given integral, the correct value for I+2/3 is 3.
