Solveeit Logo

Question

Question: If $\alpha, \beta, \gamma \in [0, 2\pi]$ and $cos\alpha + cos\beta + cos\gamma = \frac{24}{17}$ and ...

If α,β,γ[0,2π]\alpha, \beta, \gamma \in [0, 2\pi] and cosα+cosβ+cosγ=2417cos\alpha + cos\beta + cos\gamma = \frac{24}{17} and sinα+sinβ+sinγ=4517sin\alpha + sin\beta + sin\gamma = \frac{45}{17}, then value of cosα+2cosβ+3cosγcosγ+2cosβ+3cosα+sinα+2sinβ+3sinγsinγ+2sinβ+3sinα\frac{cos\alpha + 2cos\beta + 3cos\gamma}{cos\gamma + 2cos\beta + 3cos\alpha} + \frac{sin\alpha + 2sin\beta + 3sin\gamma}{sin\gamma + 2sin\beta + 3sin\alpha} is

A

83\frac{8}{3}

B

45\frac{4}{5}

C

2

D

None of these

Answer

2

Explanation

Solution

Let z1=cosα+isinαz_1 = \cos\alpha + i\sin\alpha, z2=cosβ+isinβz_2 = \cos\beta + i\sin\beta, and z3=cosγ+isinγz_3 = \cos\gamma + i\sin\gamma. We are given: cosα+cosβ+cosγ=2417\cos\alpha + \cos\beta + \cos\gamma = \frac{24}{17} sinα+sinβ+sinγ=4517\sin\alpha + \sin\beta + \sin\gamma = \frac{45}{17}

Let Z=z1+z2+z3Z = z_1 + z_2 + z_3. Z=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)Z = (\cos\alpha + \cos\beta + \cos\gamma) + i(\sin\alpha + \sin\beta + \sin\gamma) Z=2417+i4517=24+45i17Z = \frac{24}{17} + i\frac{45}{17} = \frac{24 + 45i}{17}

The magnitude of ZZ is: Z=24+45i17=11724+45i|Z| = \left|\frac{24 + 45i}{17}\right| = \frac{1}{17}|24 + 45i| Z=117242+452=117576+2025=1172601|Z| = \frac{1}{17}\sqrt{24^2 + 45^2} = \frac{1}{17}\sqrt{576 + 2025} = \frac{1}{17}\sqrt{2601} Since 512=260151^2 = 2601, we have: Z=5117=3|Z| = \frac{51}{17} = 3

We also know that z1=1|z_1|=1, z2=1|z_2|=1, and z3=1|z_3|=1 because they are complex numbers on the unit circle (eiθe^{i\theta}). By the triangle inequality for complex numbers, z1+z2+z3z1+z2+z3|z_1 + z_2 + z_3| \le |z_1| + |z_2| + |z_3|. In our case, Z=3|Z| = 3 and z1+z2+z3=1+1+1=3|z_1| + |z_2| + |z_3| = 1 + 1 + 1 = 3. The equality z1+z2+z3=z1+z2+z3|z_1 + z_2 + z_3| = |z_1| + |z_2| + |z_3| holds if and only if z1,z2,z3z_1, z_2, z_3 have the same argument, meaning they lie on the same ray from the origin. Since z1=z2=z3=1|z_1|=|z_2|=|z_3|=1, this implies z1=z2=z3z_1 = z_2 = z_3.

eiα=eiβ=eiγe^{i\alpha} = e^{i\beta} = e^{i\gamma} This implies αβ(mod2π)\alpha \equiv \beta \pmod{2\pi} and βγ(mod2π)\beta \equiv \gamma \pmod{2\pi}. Given that α,β,γ[0,2π]\alpha, \beta, \gamma \in [0, 2\pi], the only possibility is α=β=γ\alpha = \beta = \gamma.

Let α=β=γ\alpha = \beta = \gamma. Substituting this into the given equations: 3cosα=2417    cosα=8173\cos\alpha = \frac{24}{17} \implies \cos\alpha = \frac{8}{17} 3sinα=4517    sinα=15173\sin\alpha = \frac{45}{17} \implies \sin\alpha = \frac{15}{17} We can verify that cos2α+sin2α=(817)2+(1517)2=64+225289=289289=1\cos^2\alpha + \sin^2\alpha = (\frac{8}{17})^2 + (\frac{15}{17})^2 = \frac{64+225}{289} = \frac{289}{289} = 1, which is consistent.

Now we need to evaluate the given expression: E=cosα+2cosβ+3cosγcosγ+2cosβ+3cosα+sinα+2sinβ+3sinγsinγ+2sinβ+3sinαE = \frac{\cos\alpha + 2\cos\beta + 3\cos\gamma}{\cos\gamma + 2\cos\beta + 3\cos\alpha} + \frac{\sin\alpha + 2\sin\beta + 3\sin\gamma}{\sin\gamma + 2\sin\beta + 3\sin\alpha} Since α=β=γ\alpha = \beta = \gamma, let c=cosα=8/17c = \cos\alpha = 8/17 and s=sinα=15/17s = \sin\alpha = 15/17. The expression becomes: E=c+2c+3cc+2c+3c+s+2s+3ss+2s+3sE = \frac{c + 2c + 3c}{c + 2c + 3c} + \frac{s + 2s + 3s}{s + 2s + 3s} E=6c6c+6s6sE = \frac{6c}{6c} + \frac{6s}{6s} Since c=8/170c = 8/17 \ne 0 and s=15/170s = 15/17 \ne 0, the fractions are well-defined and simplify to: E=1+1=2E = 1 + 1 = 2

The value of the expression is 2.