Solveeit Logo

Question

Question: Let A be a symmetric matrix such that |A| = 2 and $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} ...

Let A be a symmetric matrix such that |A| = 2 and A=[2112][3α3β]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & \alpha \\ 3 & \beta \end{bmatrix}. If the sum of the diagonal

Answer

164/9

Explanation

Solution

The problem statement is incomplete. It ends with "If the sum of the diagonal". Assuming the question asks for the sum of the diagonal elements of matrix A, we proceed as follows:

Let the given matrices be M1=[2112]M_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} and M2=[3α3β]M_2 = \begin{bmatrix} 3 & \alpha \\ 3 & \beta \end{bmatrix}. Matrix AA is given by A=M1M2A = M_1 M_2.

1. Calculate Matrix A: A=[2112][3α3β]=[(2)(3)+(1)(3)(2)(α)+(1)(β)(1)(3)+(2)(3)(1)(α)+(2)(β)]A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & \alpha \\ 3 & \beta \end{bmatrix} = \begin{bmatrix} (2)(3) + (1)(3) & (2)(\alpha) + (1)(\beta) \\ (1)(3) + (2)(3) & (1)(\alpha) + (2)(\beta) \end{bmatrix} A=[6+32α+β3+6α+2β]=[92α+β9α+2β]A = \begin{bmatrix} 6 + 3 & 2\alpha + \beta \\ 3 + 6 & \alpha + 2\beta \end{bmatrix} = \begin{bmatrix} 9 & 2\alpha + \beta \\ 9 & \alpha + 2\beta \end{bmatrix}

2. Use the condition that A is a symmetric matrix:

A matrix A=[aij]A = [a_{ij}] is symmetric if aij=ajia_{ij} = a_{ji} for all i,ji, j. For a 2x2 matrix, this means the off-diagonal elements must be equal. From matrix A, we have a12=2α+βa_{12} = 2\alpha + \beta and a21=9a_{21} = 9. Therefore, 2α+β=92\alpha + \beta = 9. (Equation 1)

3. Use the condition that A=2|A| = 2 (Determinant of A is 2):

The determinant of a 2x2 matrix [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix} is adbcad - bc. A=(9)(α+2β)(2α+β)(9)=2|A| = (9)(\alpha + 2\beta) - (2\alpha + \beta)(9) = 2 Factor out 9: 9[(α+2β)(2α+β)]=29[(\alpha + 2\beta) - (2\alpha + \beta)] = 2 9[α+2β2αβ]=29[\alpha + 2\beta - 2\alpha - \beta] = 2 9[βα]=29[\beta - \alpha] = 2 βα=29\beta - \alpha = \frac{2}{9} This can be written as α+β=29-\alpha + \beta = \frac{2}{9}. (Equation 2)

4. Solve the system of linear equations for α\alpha and β\beta:

We have two equations:

  1. 2α+β=92\alpha + \beta = 9
  2. α+β=29-\alpha + \beta = \frac{2}{9}

Subtract Equation 2 from Equation 1: (2α+β)(α+β)=929(2\alpha + \beta) - (-\alpha + \beta) = 9 - \frac{2}{9} 2α+β+αβ=81292\alpha + \beta + \alpha - \beta = \frac{81 - 2}{9} 3α=7993\alpha = \frac{79}{9} α=7927\alpha = \frac{79}{27}

Substitute the value of α\alpha back into Equation 1 to find β\beta: 2(7927)+β=92\left(\frac{79}{27}\right) + \beta = 9 15827+β=9\frac{158}{27} + \beta = 9 β=915827\beta = 9 - \frac{158}{27} β=9×2715827\beta = \frac{9 \times 27 - 158}{27} β=24315827\beta = \frac{243 - 158}{27} β=8527\beta = \frac{85}{27}

5. Calculate the sum of the diagonal elements of A:

The diagonal elements of A are a11=9a_{11} = 9 and a22=α+2βa_{22} = \alpha + 2\beta. Sum of diagonal elements = a11+a22=9+(α+2β)a_{11} + a_{22} = 9 + (\alpha + 2\beta) Substitute the values of α\alpha and β\beta: Sum =9+(7927+2(8527))= 9 + \left(\frac{79}{27} + 2\left(\frac{85}{27}\right)\right) Sum =9+(7927+17027)= 9 + \left(\frac{79}{27} + \frac{170}{27}\right) Sum =9+(79+17027)= 9 + \left(\frac{79 + 170}{27}\right) Sum =9+24927= 9 + \frac{249}{27} Simplify the fraction 24927\frac{249}{27} by dividing the numerator and denominator by 3: 249÷327÷3=839\frac{249 \div 3}{27 \div 3} = \frac{83}{9} Sum =9+839= 9 + \frac{83}{9} Sum =9×9+839= \frac{9 \times 9 + 83}{9} Sum =81+839= \frac{81 + 83}{9} Sum =1649= \frac{164}{9}