Solveeit Logo

Question

Question: $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$ is equal to...

(tanx+cotx)dx\int (\sqrt{\tan x} + \sqrt{\cot x}) dx is equal to

A

2tan1(tanx2tanx)+c\sqrt{2} \tan^{-1} (\frac{\tan x}{\sqrt{2 \tan x}}) + c

B

2tan1(tanx12tanx)+c\sqrt{2} \tan^{-1} (\frac{\tan x -1}{\sqrt{2 \tan x}}) + c

C

tanx2tan1(cotx+12tanx)+c\frac{\tan x}{\sqrt{2}} \tan^{-1} (\frac{\cot x + 1}{\sqrt{2 \tan x}}) + c

D

tanx2tan1(cotx12cotx)+c\frac{\tan x}{\sqrt{2}} \tan^{-1} (\frac{\cot x - 1}{\sqrt{2 \cot x}}) + c

Answer

2tan1(tanx12tanx)+c\sqrt{2} \tan^{-1} (\frac{\tan x -1}{\sqrt{2 \tan x}}) + c

Explanation

Solution

We wish to evaluate

I=(tanx+cotx)dx.I=\int \left(\sqrt{\tan x}+\sqrt{\cot x}\right)dx.

A useful idea is to write the integrand in a symmetric form. Note that

tanx+cotx=tanx+1tanx.\sqrt{\tan x}+\sqrt{\cot x}=\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}.

Thus if we set

u=tanxu2=tanx,u=\sqrt{\tan x}\quad\Longrightarrow\quad u^2 = \tan x,

we can differentiate both sides with respect to xx. Differentiating gives

2ududx=sec2xdx=2udusec2x.2u\frac{du}{dx}=\sec^2 x\quad\Longrightarrow\quad dx=\frac{2u\,du}{\sec^2x}.

But since

sec2x=1+tan2x=1+u4,\sec^2x=1+\tan^2x=1+u^4,

we have

dx=2udu1+u4.dx=\frac{2u\,du}{1+u^4}.

Also, in terms of uu the integrand becomes

tanx+cotx=u+1u.\sqrt{\tan x}+\sqrt{\cot x} = u+\frac{1}{u}.

Thus the integral is

I=(u+1u)2udu1+u4=2u(u+1/u)1+u4du=2(u2+1)1+u4du.I=\int \left(u+\frac{1}{u}\right) \frac{2u\,du}{1+u^4} =\int \frac{2u(u+1/u)}{1+u^4}\,du =\int \frac{2(u^2+1)}{1+u^4}\,du.

Thus our task reduces to evaluating

I=2u2+11+u4du.I=2\int \frac{u^2+1}{1+u^4}\,du.

One may show by a further algebraic decomposition (using partial fractions and standard inverse–trigonometric integrals) that this integral can be expressed in closed–form entirely in terms of inverse–tangent. In fact (after some work which we omit here but is at the level of JEE/NEET analysis) one may prove that

I=2tan1(tanx12tanx)+C.I=\sqrt{2}\,\tan^{-1}\Biggl(\frac{\tan x-1}{\sqrt{2\tan x}}\Biggr)+C.

This result corresponds to option (b) below.