Solveeit Logo

Question

Question: 50. If 4 sin⁻¹ x + 6cos⁻¹ x = 3π then x = ...........

  1. If 4 sin⁻¹ x + 6cos⁻¹ x = 3π then x = ........
A

12\frac{1}{\sqrt{2}}

B

12\frac{1}{2}

C

0

D

-12\frac{1}{2}

Answer

0

Explanation

Solution

Let y=sin1xy = \sin^{-1} x. Then,

cos1x=π2y.\cos^{-1} x = \frac{\pi}{2} - y.

Substitute into the equation:

4y+6(π2y)=3π.4y + 6\left(\frac{\pi}{2} - y\right) = 3\pi.

Simplify:

4y+3π6y=3π2y=0y=0.4y + 3\pi - 6y = 3\pi \quad \Rightarrow \quad -2y = 0 \quad \Rightarrow \quad y = 0.

Thus,

sin1x=0x=0.\sin^{-1} x = 0 \quad \Rightarrow \quad x = 0.