Solveeit Logo

Question

Question: 50 g of CaCO3 is allowed to react with 73.5 g of H3PO4. $CaCO_3 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 +...

50 g of CaCO3 is allowed to react with 73.5 g of H3PO4. CaCO3+H3PO4Ca3(PO4)2+H2O+CO2CaCO_3 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O + CO_2 Calculate : (i) Amount of Ca3(PO4)2Ca_3(PO_4)_2 formed (in moles) (ii) Amount of unreacted reagent (in moles)

Answer

(i) 1/6 mol, (ii) 5/12 mol

Explanation

Solution

Solution:

The reaction between CaCO3CaCO_3 and H3PO4H_3PO_4 is given by the unbalanced equation: CaCO3+H3PO4Ca3(PO4)2+H2O+CO2CaCO_3 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O + CO_2

Step 1: Balance the chemical equation.

The balanced equation is: 3CaCO3+2H3PO4Ca3(PO4)2+3H2O+3CO23CaCO_3 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2

Step 2: Calculate the number of moles of each reactant.

Molar mass of CaCO3=40.08+12.01+3×16.00=100.09CaCO_3 = 40.08 + 12.01 + 3 \times 16.00 = 100.09 g/mol. Using approximate values (Ca=40, C=12, O=16), Molar mass = 40+12+3×16=10040 + 12 + 3 \times 16 = 100 g/mol. Molar mass of H3PO4=3×1.01+30.97+4×16.00=98.00H_3PO_4 = 3 \times 1.01 + 30.97 + 4 \times 16.00 = 98.00 g/mol. Using approximate values (H=1, P=31, O=16), Molar mass = 3×1+31+4×16=983 \times 1 + 31 + 4 \times 16 = 98 g/mol.

Moles of CaCO3=Mass of CaCO3Molar mass of CaCO3=50 g100 g/mol=0.5 molCaCO_3 = \frac{\text{Mass of } CaCO_3}{\text{Molar mass of } CaCO_3} = \frac{50 \text{ g}}{100 \text{ g/mol}} = 0.5 \text{ mol}. Moles of H3PO4=Mass of H3PO4Molar mass of H3PO4=73.5 g98 g/mol=0.75 molH_3PO_4 = \frac{\text{Mass of } H_3PO_4}{\text{Molar mass of } H_3PO_4} = \frac{73.5 \text{ g}}{98 \text{ g/mol}} = 0.75 \text{ mol}.

Step 3: Identify the limiting reagent.

According to the balanced equation, 3 moles of CaCO3CaCO_3 react with 2 moles of H3PO4H_3PO_4. The stoichiometric ratio is n(CaCO3):n(H3PO4)=3:2=1.5n(CaCO_3) : n(H_3PO_4) = 3 : 2 = 1.5. The available mole ratio is n(CaCO3):n(H3PO4)=0.5:0.75=0.50.75=5075=230.667n(CaCO_3) : n(H_3PO_4) = 0.5 : 0.75 = \frac{0.5}{0.75} = \frac{50}{75} = \frac{2}{3} \approx 0.667. Since the available ratio (0.667) is less than the required stoichiometric ratio (1.5), CaCO3CaCO_3 is the limiting reagent.

Alternatively, we can check how much of one reactant is required to react with the given amount of the other. Moles of H3PO4H_3PO_4 required to react with 0.5 mol of CaCO3=0.5 mol CaCO3×2 mol H3PO43 mol CaCO3=13 mol H3PO4CaCO_3 = 0.5 \text{ mol } CaCO_3 \times \frac{2 \text{ mol } H_3PO_4}{3 \text{ mol } CaCO_3} = \frac{1}{3} \text{ mol } H_3PO_4. Since the available amount of H3PO4H_3PO_4 (0.75 mol) is greater than the required amount (1/3 mol), H3PO4H_3PO_4 is in excess, and CaCO3CaCO_3 is the limiting reagent.

(i) Calculate the amount of Ca3(PO4)2Ca_3(PO_4)_2 formed (in moles).

The amount of product formed is determined by the limiting reagent (CaCO3CaCO_3). From the balanced equation, 3 moles of CaCO3CaCO_3 produce 1 mole of Ca3(PO4)2Ca_3(PO_4)_2. Moles of Ca3(PO4)2Ca_3(PO_4)_2 formed = Moles of CaCO3CaCO_3 used ×1 mol Ca3(PO4)23 mol CaCO3\times \frac{1 \text{ mol } Ca_3(PO_4)_2}{3 \text{ mol } CaCO_3} Moles of Ca3(PO4)2Ca_3(PO_4)_2 formed = 0.5 mol×13=0.53=16 mol0.5 \text{ mol} \times \frac{1}{3} = \frac{0.5}{3} = \frac{1}{6} \text{ mol}.

(ii) Calculate the amount of unreacted reagent (in moles).

The unreacted reagent is the excess reagent, which is H3PO4H_3PO_4. Amount of H3PO4H_3PO_4 reacted with 0.5 mol of CaCO3=13CaCO_3 = \frac{1}{3} mol (calculated in Step 3). Initial amount of H3PO4=0.75 mol=34 molH_3PO_4 = 0.75 \text{ mol} = \frac{3}{4} \text{ mol}. Amount of H3PO4H_3PO_4 unreacted = Initial amount of H3PO4H_3PO_4 - Amount of H3PO4H_3PO_4 reacted Amount of H3PO4H_3PO_4 unreacted = 34 mol13 mol=912 mol412 mol=512 mol\frac{3}{4} \text{ mol} - \frac{1}{3} \text{ mol} = \frac{9}{12} \text{ mol} - \frac{4}{12} \text{ mol} = \frac{5}{12} \text{ mol}.