Solveeit Logo

Question

Question: Find sum of the series $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})...

Find sum of the series m=1n=1m2n3m(n.3m+m.3n)\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})}

Answer

932\frac{9}{32}

Explanation

Solution

Let the given series be S=m=1n=1m2n3m(n.3m+m.3n)S = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})}.

Let the general term be Tm,n=m2n3m(n.3m+m.3n)T_{m,n} = \frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})}.

Consider the sum of Tm,nT_{m,n} and Tn,mT_{n,m}:

Tm,n+Tn,m=m2n3m(n.3m+m.3n)+n2m3n(m.3n+n.3m)T_{m,n} + T_{n,m} = \frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})} + \frac{n^{2}m}{3^{n}(m.3^{n} + n.3^{m})}.

Let D=n.3m+m.3nD = n.3^{m} + m.3^{n}.

Tm,n+Tn,m=m2n3mD+n2m3nD=1D(m2n3m+n2m3n)T_{m,n} + T_{n,m} = \frac{m^{2}n}{3^{m}D} + \frac{n^{2}m}{3^{n}D} = \frac{1}{D} \left( \frac{m^{2}n}{3^{m}} + \frac{n^{2}m}{3^{n}} \right).

Factor out mnmn:

Tm,n+Tn,m=mnD(m3m+n3n)T_{m,n} + T_{n,m} = \frac{mn}{D} \left( \frac{m}{3^{m}} + \frac{n}{3^{n}} \right).

Substitute D=n.3m+m.3nD = n.3^{m} + m.3^{n} and combine the terms in the parenthesis:

m3m+n3n=m.3n+n.3m3m3n\frac{m}{3^{m}} + \frac{n}{3^{n}} = \frac{m.3^{n} + n.3^{m}}{3^{m}3^{n}}.

So, Tm,n+Tn,m=mnn.3m+m.3nm.3n+n.3m3m3n=mn3m3n=mn3m+nT_{m,n} + T_{n,m} = \frac{mn}{n.3^{m} + m.3^{n}} \cdot \frac{m.3^{n} + n.3^{m}}{3^{m}3^{n}} = \frac{mn}{3^{m}3^{n}} = \frac{mn}{3^{m+n}}.

This identity holds for all m,n1m,n \ge 1.

Now, sum this identity over all m,n1m,n \ge 1:

m=1n=1(Tm,n+Tn,m)=m=1n=1mn3m+n\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} (T_{m,n} + T_{n,m}) = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \frac{mn}{3^{m+n}}.

The left side can be written as m=1n=1Tm,n+m=1n=1Tn,m\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} T_{m,n} + \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} T_{n,m}.

Let S=m=1n=1Tm,nS = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} T_{m,n}. The second term is also SS (by changing dummy variables).

So, the left side is S+S=2SS+S = 2S.

The right side is m=1n=1(m3m)(n3n)\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left(\frac{m}{3^m}\right) \left(\frac{n}{3^n}\right).

This is a product of two independent sums:

(m=1m3m)(n=1n3n)\left( \sum_{m=1}^{\infty} \frac{m}{3^m} \right) \left( \sum_{n=1}^{\infty} \frac{n}{3^n} \right).

Let S1=k=1k3kS_1 = \sum_{k=1}^{\infty} \frac{k}{3^k}.

We use the known formula for the sum of the series k=1kxk=x(1x)2\sum_{k=1}^{\infty} k x^k = \frac{x}{(1-x)^2}.

For x=1/3x = 1/3:

S1=1/3(11/3)2=1/3(2/3)2=1/34/9=1394=34S_1 = \frac{1/3}{(1-1/3)^2} = \frac{1/3}{(2/3)^2} = \frac{1/3}{4/9} = \frac{1}{3} \cdot \frac{9}{4} = \frac{3}{4}.

So, the right side is S1S1=(34)(34)=916S_1 \cdot S_1 = \left(\frac{3}{4}\right) \left(\frac{3}{4}\right) = \frac{9}{16}.

Equating the two sides:

2S=9162S = \frac{9}{16}.

S=932S = \frac{9}{32}.