Question
Question: Find sum of the series $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{m^{2}n}{3^{m}(n.3^{m} + m.3^{n})...
Find sum of the series ∑m=1∞∑n=1∞3m(n.3m+m.3n)m2n

329
Solution
Let the given series be S=∑m=1∞∑n=1∞3m(n.3m+m.3n)m2n.
Let the general term be Tm,n=3m(n.3m+m.3n)m2n.
Consider the sum of Tm,n and Tn,m:
Tm,n+Tn,m=3m(n.3m+m.3n)m2n+3n(m.3n+n.3m)n2m.
Let D=n.3m+m.3n.
Tm,n+Tn,m=3mDm2n+3nDn2m=D1(3mm2n+3nn2m).
Factor out mn:
Tm,n+Tn,m=Dmn(3mm+3nn).
Substitute D=n.3m+m.3n and combine the terms in the parenthesis:
3mm+3nn=3m3nm.3n+n.3m.
So, Tm,n+Tn,m=n.3m+m.3nmn⋅3m3nm.3n+n.3m=3m3nmn=3m+nmn.
This identity holds for all m,n≥1.
Now, sum this identity over all m,n≥1:
∑m=1∞∑n=1∞(Tm,n+Tn,m)=∑m=1∞∑n=1∞3m+nmn.
The left side can be written as ∑m=1∞∑n=1∞Tm,n+∑m=1∞∑n=1∞Tn,m.
Let S=∑m=1∞∑n=1∞Tm,n. The second term is also S (by changing dummy variables).
So, the left side is S+S=2S.
The right side is ∑m=1∞∑n=1∞(3mm)(3nn).
This is a product of two independent sums:
(∑m=1∞3mm)(∑n=1∞3nn).
Let S1=∑k=1∞3kk.
We use the known formula for the sum of the series ∑k=1∞kxk=(1−x)2x.
For x=1/3:
S1=(1−1/3)21/3=(2/3)21/3=4/91/3=31⋅49=43.
So, the right side is S1⋅S1=(43)(43)=169.
Equating the two sides:
2S=169.
S=329.