Solveeit Logo

Question

Question: $x \in \left[-\frac{2029\pi}{2}; -\frac{2027\pi}{2}\right]$...

x[2029π2;2027π2]x \in \left[-\frac{2029\pi}{2}; -\frac{2027\pi}{2}\right]

Answer

x+1014\pi

Explanation

Solution

For any x[nππ2,nπ+π2] x \in [n\pi-\frac{\pi}{2}, n\pi+\frac{\pi}{2}], we have:

sin1(sinx)=(1)n(xnπ).\sin^{-1}(\sin x)=(-1)^n (x-n\pi).

For the interval

x[2029π2,2027π2],x\in\Big[-\frac{2029\pi}{2}, -\frac{2027\pi}{2}\Big],

set

nππ2=2029π2nπ=2029π2+π2=2028π2=1014π.n\pi-\frac{\pi}{2}=-\frac{2029\pi}{2}\quad\Longrightarrow\quad n\pi=-\frac{2029\pi}{2}+\frac{\pi}{2} = -\frac{2028\pi}{2}=-1014\pi.

Thus, n=1014n=-1014 and consequently,

nπ+π2=1014π+π2=2027π2.n\pi+\frac{\pi}{2}=-1014\pi+\frac{\pi}{2}=-\frac{2027\pi}{2}.

Since 1014-1014 is even, (1)n=(1)1014=1(-1)^n = (-1)^{-1014}=1. Therefore:

sin1(sinx)=x(1014π)=x+1014π.\sin^{-1}(\sin x)= x-(-1014\pi)= x+1014\pi.