Question
Question: The value of $\sqrt{3} \left| \frac{\frac{2 \sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac...
The value of 3cot(200∘)cot(200∘)−tan(280∘)sec(220∘)2sin(140∘)sec(280∘)+csc(20∘)sec(340∘) is ___.

3
Solution
To find the value of the given expression, we will simplify the numerator and the denominator separately.
The given expression is 3cot(200∘)cot(200∘)−tan(280∘)sec(220∘)2sin(140∘)sec(280∘)+csc(20∘)sec(340∘).
Step 1: Simplify the Numerator
Let the numerator be N. N=sec(220∘)2sin(140∘)sec(280∘)+csc(20∘)sec(340∘)
First, convert the angles to their equivalent acute angles or related angles in the first quadrant using trigonometric identities:
- sin(140∘)=sin(180∘−40∘)=sin(40∘)
- sec(280∘)=sec(360∘−80∘)=sec(80∘) (Since 280∘ is in Quadrant IV, secant is positive)
- sec(220∘)=sec(180∘+40∘)=−sec(40∘) (Since 220∘ is in Quadrant III, secant is negative)
- sec(340∘)=sec(360∘−20∘)=sec(20∘) (Since 340∘ is in Quadrant IV, secant is positive)
- csc(20∘) remains as is.
Substitute these into the numerator expression: N=−sec(40∘)2sin(40∘)sec(80∘)+csc(20∘)sec(20∘)
Simplify the first term: −sec(40∘)2sin(40∘)sec(80∘)=−2sin(40∘)1/cos(40∘)1/cos(80∘) =−2sin(40∘)cos(80∘)cos(40∘) =−cos(80∘)2sin(40∘)cos(40∘)
Using the double angle identity 2sinAcosA=sin(2A): =−cos(80∘)sin(2×40∘)=−cos(80∘)sin(80∘)=−tan(80∘)
Simplify the second term: csc(20∘)sec(20∘)=1/sin(20∘)1/cos(20∘)=cos(20∘)sin(20∘)=tan(20∘)
So, the numerator N=−tan(80∘)+tan(20∘)=tan(20∘)−tan(80∘).
Step 2: Simplify the Denominator
Let the denominator be D. D=cot(200∘)cot(200∘)−tan(280∘)
First, convert the angles:
- cot(200∘)=cot(180∘+20∘)=cot(20∘) (Since 200∘ is in Quadrant III, cotangent is positive)
- tan(280∘)=tan(360∘−80∘)=−tan(80∘) (Since 280∘ is in Quadrant IV, tangent is negative)
Substitute these into the denominator expression: D=cot(20∘)cot(20∘)−(−tan(80∘)) D=cot(20∘)cot(20∘)+tan(80∘) D=1+cot(20∘)tan(80∘)
Since cot(20∘)1=tan(20∘): D=1+tan(80∘)tan(20∘)
Step 3: Evaluate the fraction inside the absolute value
Let the fraction be F=DN. F=1+tan(20∘)tan(80∘)tan(20∘)−tan(80∘)
This expression matches the tangent subtraction formula: tan(A−B)=1+tanAtanBtanA−tanB. Here, A=20∘ and B=80∘. So, F=tan(20∘−80∘)=tan(−60∘)
Since tan(−θ)=−tan(θ): F=−tan(60∘)=−3
Step 4: Calculate the final value
The problem asks for the value of 3∣F∣. 3−3=3×3=3.
The final answer is 3.
Explanation of the solution:
The given expression is simplified by first converting all trigonometric functions of angles outside the first quadrant to their equivalent forms involving acute angles.
The numerator simplifies to tan(20∘)−tan(80∘) using double angle identities and properties of reciprocal trigonometric functions.
The denominator simplifies to 1+tan(80∘)tan(20∘) by splitting the fraction and using reciprocal identities.
The ratio of the simplified numerator and denominator is recognized as the tangent subtraction formula tan(A−B)=1+tanAtanBtanA−tanB.
This results in tan(20∘−80∘)=tan(−60∘)=−3.
Finally, the absolute value is taken, and the result is multiplied by 3, yielding 3×∣−3∣=3×3=3.