Solveeit Logo

Question

Question: The value of $\sqrt{3} \left| \frac{\frac{2 \sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac...

The value of 32sin(140)sec(280)sec(220)+sec(340)csc(20)cot(200)tan(280)cot(200)\sqrt{3} \left| \frac{\frac{2 \sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac{\sec(340^\circ)}{\csc(20^\circ)}}{\frac{\cot(200^\circ) - \tan(280^\circ)}{\cot(200^\circ)}} \right| is ___.

Answer

3

Explanation

Solution

To find the value of the given expression, we will simplify the numerator and the denominator separately.

The given expression is 32sin(140)sec(280)sec(220)+sec(340)csc(20)cot(200)tan(280)cot(200)\sqrt{3} \left| \frac{\frac{2 \sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac{\sec(340^\circ)}{\csc(20^\circ)}}{\frac{\cot(200^\circ) - \tan(280^\circ)}{\cot(200^\circ)}} \right|.

Step 1: Simplify the Numerator

Let the numerator be NN. N=2sin(140)sec(280)sec(220)+sec(340)csc(20)N = \frac{2 \sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac{\sec(340^\circ)}{\csc(20^\circ)}

First, convert the angles to their equivalent acute angles or related angles in the first quadrant using trigonometric identities:

  • sin(140)=sin(18040)=sin(40)\sin(140^\circ) = \sin(180^\circ - 40^\circ) = \sin(40^\circ)
  • sec(280)=sec(36080)=sec(80)\sec(280^\circ) = \sec(360^\circ - 80^\circ) = \sec(80^\circ) (Since 280280^\circ is in Quadrant IV, secant is positive)
  • sec(220)=sec(180+40)=sec(40)\sec(220^\circ) = \sec(180^\circ + 40^\circ) = -\sec(40^\circ) (Since 220220^\circ is in Quadrant III, secant is negative)
  • sec(340)=sec(36020)=sec(20)\sec(340^\circ) = \sec(360^\circ - 20^\circ) = \sec(20^\circ) (Since 340340^\circ is in Quadrant IV, secant is positive)
  • csc(20)\csc(20^\circ) remains as is.

Substitute these into the numerator expression: N=2sin(40)sec(80)sec(40)+sec(20)csc(20)N = \frac{2 \sin(40^\circ)\sec(80^\circ)}{-\sec(40^\circ)} + \frac{\sec(20^\circ)}{\csc(20^\circ)}

Simplify the first term: 2sin(40)sec(80)sec(40)=2sin(40)1/cos(80)1/cos(40)\frac{2 \sin(40^\circ)\sec(80^\circ)}{-\sec(40^\circ)} = -2 \sin(40^\circ) \frac{1/\cos(80^\circ)}{1/\cos(40^\circ)} =2sin(40)cos(40)cos(80)= -2 \sin(40^\circ) \frac{\cos(40^\circ)}{\cos(80^\circ)} =2sin(40)cos(40)cos(80)= -\frac{2 \sin(40^\circ)\cos(40^\circ)}{\cos(80^\circ)}

Using the double angle identity 2sinAcosA=sin(2A)2 \sin A \cos A = \sin(2A): =sin(2×40)cos(80)=sin(80)cos(80)=tan(80)= -\frac{\sin(2 \times 40^\circ)}{\cos(80^\circ)} = -\frac{\sin(80^\circ)}{\cos(80^\circ)} = -\tan(80^\circ)

Simplify the second term: sec(20)csc(20)=1/cos(20)1/sin(20)=sin(20)cos(20)=tan(20)\frac{\sec(20^\circ)}{\csc(20^\circ)} = \frac{1/\cos(20^\circ)}{1/\sin(20^\circ)} = \frac{\sin(20^\circ)}{\cos(20^\circ)} = \tan(20^\circ)

So, the numerator N=tan(80)+tan(20)=tan(20)tan(80)N = -\tan(80^\circ) + \tan(20^\circ) = \tan(20^\circ) - \tan(80^\circ).

Step 2: Simplify the Denominator

Let the denominator be DD. D=cot(200)tan(280)cot(200)D = \frac{\cot(200^\circ) - \tan(280^\circ)}{\cot(200^\circ)}

First, convert the angles:

  • cot(200)=cot(180+20)=cot(20)\cot(200^\circ) = \cot(180^\circ + 20^\circ) = \cot(20^\circ) (Since 200200^\circ is in Quadrant III, cotangent is positive)
  • tan(280)=tan(36080)=tan(80)\tan(280^\circ) = \tan(360^\circ - 80^\circ) = -\tan(80^\circ) (Since 280280^\circ is in Quadrant IV, tangent is negative)

Substitute these into the denominator expression: D=cot(20)(tan(80))cot(20)D = \frac{\cot(20^\circ) - (-\tan(80^\circ))}{\cot(20^\circ)} D=cot(20)+tan(80)cot(20)D = \frac{\cot(20^\circ) + \tan(80^\circ)}{\cot(20^\circ)} D=1+tan(80)cot(20)D = 1 + \frac{\tan(80^\circ)}{\cot(20^\circ)}

Since 1cot(20)=tan(20)\frac{1}{\cot(20^\circ)} = \tan(20^\circ): D=1+tan(80)tan(20)D = 1 + \tan(80^\circ)\tan(20^\circ)

Step 3: Evaluate the fraction inside the absolute value

Let the fraction be F=NDF = \frac{N}{D}. F=tan(20)tan(80)1+tan(20)tan(80)F = \frac{\tan(20^\circ) - \tan(80^\circ)}{1 + \tan(20^\circ)\tan(80^\circ)}

This expression matches the tangent subtraction formula: tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}. Here, A=20A = 20^\circ and B=80B = 80^\circ. So, F=tan(2080)=tan(60)F = \tan(20^\circ - 80^\circ) = \tan(-60^\circ)

Since tan(θ)=tan(θ)\tan(-\theta) = -\tan(\theta): F=tan(60)=3F = -\tan(60^\circ) = -\sqrt{3}

Step 4: Calculate the final value

The problem asks for the value of 3F\sqrt{3} \left| F \right|. 33=3×3=3\sqrt{3} \left| -\sqrt{3} \right| = \sqrt{3} \times \sqrt{3} = 3.

The final answer is 3\boxed{3}.

Explanation of the solution:

The given expression is simplified by first converting all trigonometric functions of angles outside the first quadrant to their equivalent forms involving acute angles.

The numerator simplifies to tan(20)tan(80)\tan(20^\circ) - \tan(80^\circ) using double angle identities and properties of reciprocal trigonometric functions.

The denominator simplifies to 1+tan(80)tan(20)1 + \tan(80^\circ)\tan(20^\circ) by splitting the fraction and using reciprocal identities.

The ratio of the simplified numerator and denominator is recognized as the tangent subtraction formula tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.

This results in tan(2080)=tan(60)=3\tan(20^\circ - 80^\circ) = \tan(-60^\circ) = -\sqrt{3}.

Finally, the absolute value is taken, and the result is multiplied by 3\sqrt{3}, yielding 3×3=3×3=3\sqrt{3} \times |-\sqrt{3}| = \sqrt{3} \times \sqrt{3} = 3.