Solveeit Logo

Question

Question: The complete set of values the parameter 'a' so that the point $P(a, \frac{1}{1+a^2})$ doesn't lie o...

The complete set of values the parameter 'a' so that the point P(a,11+a2)P(a, \frac{1}{1+a^2}) doesn't lie outside the triangle formed by the lines 15y=x+1,78y=11823x15y = x + 1, 78y = 118 - 23x and y+2=0y + 2 = 0 is -

A

(0, 5)

B

[2, 5]

C

(1, 5)

D

[0, 2]

Answer

[2, 5]

Explanation

Solution

The problem asks for the complete set of values of the parameter 'a' such that the point P(a,11+a2)P(a, \frac{1}{1+a^2}) lies inside or on the boundary of the triangle formed by three given lines.

Let the three lines be:

  1. L1:x15y+1=0L_1: x - 15y + 1 = 0
  2. L2:23x+78y118=0L_2: 23x + 78y - 118 = 0
  3. L3:y+2=0L_3: y + 2 = 0

To determine the region of the triangle, we first find its vertices:

  • Vertex A (Intersection of L1L_1 and L3L_3): Substitute y=2y = -2 into L1L_1: x15(2)+1=0x+30+1=0x=31x - 15(-2) + 1 = 0 \Rightarrow x + 30 + 1 = 0 \Rightarrow x = -31. So, A=(31,2)A = (-31, -2).
  • Vertex B (Intersection of L2L_2 and L3L_3): Substitute y=2y = -2 into L2L_2: 23x+78(2)118=023x156118=023x=274x=2742323x + 78(-2) - 118 = 0 \Rightarrow 23x - 156 - 118 = 0 \Rightarrow 23x = 274 \Rightarrow x = \frac{274}{23}. So, B=(27423,2)B = (\frac{274}{23}, -2).
  • Vertex C (Intersection of L1L_1 and L2L_2): From L1L_1, x=15y1x = 15y - 1. Substitute into L2L_2: 23(15y1)+78y118=023(15y - 1) + 78y - 118 = 0 345y23+78y118=0345y - 23 + 78y - 118 = 0 423y141=0y=141423=13423y - 141 = 0 \Rightarrow y = \frac{141}{423} = \frac{1}{3}. Substitute y=13y = \frac{1}{3} back into x=15y1x = 15y - 1: x=15(13)1=51=4x = 15(\frac{1}{3}) - 1 = 5 - 1 = 4. So, C=(4,13)C = (4, \frac{1}{3}).

The vertices of the triangle are A(31,2)A(-31, -2), B(27423,2)B(\frac{274}{23}, -2), and C(4,13)C(4, \frac{1}{3}).

For a point P(xP,yP)P(x_P, y_P) to lie inside or on the boundary of the triangle, it must satisfy the conditions that it lies on the same side of each line as the third vertex. Let's determine the correct inequalities for the region:

  • For L1:x15y+1=0L_1: x - 15y + 1 = 0: Check vertex B(27423,2)B(\frac{274}{23}, -2) (not on L1L_1). L1(B)=2742315(2)+1=27423+30+1=27423+31=274+71323=98723>0L_1(B) = \frac{274}{23} - 15(-2) + 1 = \frac{274}{23} + 30 + 1 = \frac{274}{23} + 31 = \frac{274 + 713}{23} = \frac{987}{23} > 0. So, the region is x15y+10x - 15y + 1 \ge 0.
  • For L2:23x+78y118=0L_2: 23x + 78y - 118 = 0: Check vertex A(31,2)A(-31, -2) (not on L2L_2). L2(A)=23(31)+78(2)118=713156118=987<0L_2(A) = 23(-31) + 78(-2) - 118 = -713 - 156 - 118 = -987 < 0. So, the region is 23x+78y118023x + 78y - 118 \le 0.
  • For L3:y+2=0L_3: y + 2 = 0: Check vertex C(4,13)C(4, \frac{1}{3}) (not on L3L_3). L3(C)=13+2=73>0L_3(C) = \frac{1}{3} + 2 = \frac{7}{3} > 0. So, the region is y+20y + 2 \ge 0.

Now, substitute the coordinates of point P(a,11+a2)P(a, \frac{1}{1+a^2}) into these inequalities:

Condition 1: a15(11+a2)+10a - 15(\frac{1}{1+a^2}) + 1 \ge 0 Multiply by (1+a2)(1+a^2) (which is always positive since a20a^2 \ge 0): a(1+a2)15+(1+a2)0a(1+a^2) - 15 + (1+a^2) \ge 0 a+a315+1+a20a + a^3 - 15 + 1 + a^2 \ge 0 a3+a2+a140a^3 + a^2 + a - 14 \ge 0 Let f(a)=a3+a2+a14f(a) = a^3 + a^2 + a - 14. By inspection, f(2)=23+22+214=8+4+214=0f(2) = 2^3 + 2^2 + 2 - 14 = 8 + 4 + 2 - 14 = 0. So (a2)(a-2) is a factor. Dividing f(a)f(a) by (a2)(a-2) gives a2+3a+7a^2 + 3a + 7. f(a)=(a2)(a2+3a+7)f(a) = (a-2)(a^2 + 3a + 7). The quadratic factor a2+3a+7a^2 + 3a + 7 has discriminant Δ=324(1)(7)=928=19<0\Delta = 3^2 - 4(1)(7) = 9 - 28 = -19 < 0. Since the leading coefficient is positive, a2+3a+7a^2 + 3a + 7 is always positive for all real aa. Therefore, for f(a)0f(a) \ge 0, we must have a20a-2 \ge 0, which implies a2a \ge 2.

Condition 2: 23a+78(11+a2)118023a + 78(\frac{1}{1+a^2}) - 118 \le 0 Multiply by (1+a2)(1+a^2): 23a(1+a2)+78118(1+a2)023a(1+a^2) + 78 - 118(1+a^2) \le 0 23a+23a3+78118118a2023a + 23a^3 + 78 - 118 - 118a^2 \le 0 23a3118a2+23a40023a^3 - 118a^2 + 23a - 40 \le 0 Let g(a)=23a3118a2+23a40g(a) = 23a^3 - 118a^2 + 23a - 40. By inspection, g(5)=23(53)118(52)+23(5)40=23(125)118(25)+11540=28752950+11540=0g(5) = 23(5^3) - 118(5^2) + 23(5) - 40 = 23(125) - 118(25) + 115 - 40 = 2875 - 2950 + 115 - 40 = 0. So (a5)(a-5) is a factor. Dividing g(a)g(a) by (a5)(a-5) gives 23a23a+823a^2 - 3a + 8. g(a)=(a5)(23a23a+8)g(a) = (a-5)(23a^2 - 3a + 8). The quadratic factor 23a23a+823a^2 - 3a + 8 has discriminant Δ=(3)24(23)(8)=9736=727<0\Delta = (-3)^2 - 4(23)(8) = 9 - 736 = -727 < 0. Since the leading coefficient is positive, 23a23a+823a^2 - 3a + 8 is always positive for all real aa. Therefore, for g(a)0g(a) \le 0, we must have a50a-5 \le 0, which implies a5a \le 5.

Condition 3: 11+a2+20\frac{1}{1+a^2} + 2 \ge 0 Since a20a^2 \ge 0, 1+a211+a^2 \ge 1. This means 0<11+a210 < \frac{1}{1+a^2} \le 1. Thus, 11+a2+2\frac{1}{1+a^2} + 2 will always be greater than 22 (specifically, 2<11+a2+232 < \frac{1}{1+a^2} + 2 \le 3). So, this condition is always satisfied for all real aa.

Combining the conditions a2a \ge 2 and a5a \le 5, we get the interval [2,5][2, 5]. This means that for any aa in the interval [2,5][2, 5], the point P(a,11+a2)P(a, \frac{1}{1+a^2}) will lie inside or on the boundary of the given triangle.