Solveeit Logo

Question

Question: \(5{\text{mL}}\) of \(8{\text{N}}\) nitric acid, \(4.8{\text{mL}}\) of \(5{\text{N}}\) hydrochloric ...

5mL5{\text{mL}} of 8N8{\text{N}} nitric acid, 4.8mL4.8{\text{mL}} of 5N5{\text{N}} hydrochloric acid and a certain volume of 17M17{\text{M}} sulfuric acid are mixed together and made up to 2L2{\text{L}}. 30mL30{\text{mL}} of this acid mixture exactly neutralize 42.9mL42.9{\text{mL}} of sodium carbonate solution containing 1g1{\text{g}} of Na2CO3.10H2O{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}.10{{\text{H}}_2}{\text{O}} in 100mL100{\text{mL}} of water. Calculate the amount (in g{\text{g}} ) of the sulfate ions in solution.

Explanation

Solution

In all the techniques of quantitative analysis, the use of solutions requires some basis for the expression of solution concentration. Normality is the strength of solution measured in terms of gram equivalents. Normality depends on the equivalent mass and volume. Using normality, the volume of the acid can be calculated. With volume and the equivalent weight of the acid, the amount of the sulfate ions is calculated.

Complete step by step answer:
Given that,
Volume of nitric acid, VHNO3=5mL{{\text{V}}_{{\text{HN}}{{\text{O}}_3}}} = 5{\text{mL}}
Normality of nitric acid, NHNO3=8N{{\text{N}}_{{\text{HN}}{{\text{O}}_3}}} = 8{\text{N}}
Volume of HCl,VHCl=4.8mL{\text{HCl}},{{\text{V}}_{{\text{HCl}}}} = 4.8{\text{mL}}
Normality of HCl,NHCl=5N{\text{HCl}},{{\text{N}}_{{\text{HCl}}}} = 5{\text{N}}
Molarity of H2SO4,MH2SO4=17M{{\text{H}}_2}{\text{S}}{{\text{O}}_4},{{\text{M}}_{{{\text{H}}_2}{\text{S}}{{\text{O}}_4}}} = 17{\text{M}}
Volume of Na2CO3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3} , VNa2CO3=42.9mL{{\text{V}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}} = 42.9{\text{mL}}
Volume of acid mixture, Vacid=30mL{{\text{V}}_{{\text{acid}}}} = 30{\text{mL}}

Three acids of different normality and volumes are mixed together and made up the solution. From this, a certain volume was needed to neutralize sodium carbonate. We need to calculate the amount of sulfate ions.
Molecular mass of Na2CO3.10H2O{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}.10{{\text{H}}_2}{\text{O}} =286 = 286
Valency of sodium carbonate depends upon the number of charges it dissociates, i.e. the valency is 22.
Hence, equivalent mass of Na2CO3.10H2O{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}.10{{\text{H}}_2}{\text{O}} =2862=143 = \dfrac{{286}}{2} = 143
It is given that 100mL100{\text{mL}} sodium carbonate solution contains 1g1{\text{g}}
So 1000mL1000{\text{mL}} sodium carbonate solution contains 1g100mL×1000mL = 10g\dfrac{{1{\text{g}}}}{{100{\text{mL}}}} \times 1000{\text{mL = 10g}}
Thus, normality can be calculated.
i.e. Normality =Number  of  gram  equivalentsVolume  in  litres = \dfrac{{{\text{Number}}\;{\text{of}}\;{\text{gram}}\;{\text{equivalents}}}}{{{\text{Volume}}\;{\text{in}}\;{\text{litres}}}}
Number of gram equivalents =Weight  of  soluteEquivalent  weight  of  solute = \dfrac{{{\text{Weight}}\;{\text{of}}\;{\text{solute}}}}{{{\text{Equivalent}}\;{\text{weight}}\;{\text{of}}\;{\text{solute}}}}
Thus normality =Weight  of  soluteEquivalent  weight  of  solute X 1Volume  in  litres = \dfrac{{{\text{Weight}}\;{\text{of}}\;{\text{solute}}}}{{{\text{Equivalent}}\;{\text{weight}}\;{\text{of}}\;{\text{solute}}}}{\text{ X }}\dfrac{{\text{1}}}{{{\text{Volume}}\;{\text{in}}\;{\text{litres}}}}
Normality, N=10143×11=10143N{\text{N}} = \dfrac{{10}}{{143}} \times \dfrac{1}{1} = \dfrac{{10}}{{143}}{\text{N}}
All the three acids are mixed together and a volume of 30mL30{\text{mL}} of this mixture neutralized 42.9mL42.9{\text{mL}} of sodium carbonate solution.
Thus, the volumes of acid and Na2CO3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3} is given.
i.e. Volume of acid mixture, Vacid=30mL{{\text{V}}_{{\text{acid}}}} = 30{\text{mL}}
Volume of Na2CO3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3} , VNa2CO3=42.9mL{{\text{V}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}} = 42.9{\text{mL}}
Normality of Na2CO3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}, NNa2CO3=10143N{{\text{N}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}} = \dfrac{{10}}{{143}}{\text{N}}
Thus, normality of acid can be calculated using the formula give below:
NNa2CO3VNa2CO3=NacidVacid{{\text{N}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}}{{\text{V}}_{_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}}} = {{\text{N}}_{{\text{acid}}}}{{\text{V}}_{{\text{acid}}}}
Normality of acid, Nacid=NNa2CO3×VNa2CO3Vacid{{\text{N}}_{{\text{acid}}}} = \dfrac{{{{\text{N}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}} \times {{\text{V}}_{{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}}}}}{{{{\text{V}}_{{\text{acid}}}}}}
Substituting the values, we get
Nacid=10×42.9143×30=4294290=0.1N{{\text{N}}_{{\text{acid}}}} = \dfrac{{10 \times 42.9}}{{143 \times 30}} = \dfrac{{429}}{{4290}} = 0.1{\text{N}}
The mixture contains 5mL5{\text{mL}} volume of 8N8{\text{N}}nitric acid, 4.8mL4.8{\text{mL}}volume of 5N5{\text{N}} hydrochloric acid and a V{\text{V}} of 17M17{\text{M}} sulfuric acid.
We can say that the sum of the product of normality and volume of each acid is equal to the product of normality and volume of the mixture.
i.e. NHNO3VHNO3+NHClVHCl+NH2SO4VH2SO4=NmixVmix{{\text{N}}_{{\text{HN}}{{\text{O}}_3}}}{{\text{V}}_{{\text{HN}}{{\text{O}}_{\text{3}}}}} + {{\text{N}}_{{\text{HCl}}}}{{\text{V}}_{{\text{HCl}}}} + {{\text{N}}_{{{\text{H}}_2}{\text{S}}{{\text{O}}_4}}}{{\text{V}}_{{{\text{H}}_2}{\text{S}}{{\text{O}}_4}}} = {{\text{N}}_{{\text{mix}}}}{{\text{V}}_{{\text{mix}}}}
Substituting the values, we get
8N×5mL+5N×4.8mL+34N×VmL=0.1N×2000mL\Rightarrow 8\,{\text{N}} \times 5\,{\text{mL}} + 5\,{\text{N}} \times 4.8\,{\text{mL}} + 34\,{\text{N}} \times {\text{V}}\,{\text{mL}} = 0.1\,{\text{N}} \times 2000\,{\text{mL}}
On simplifying,
40+2.4+34V=200\Rightarrow 40 + 2.4 + 34{\text{V}} = 200
42.4+34V=200 34V=20042.4=157.6 V=157.634=4.6mL  \Rightarrow 42.4 + 34{\text{V}} = 200 \\\ \Rightarrow 34{\text{V}} = 200 - 42.4 = 157.6 \\\ \Rightarrow {\text{V}} = \dfrac{{157.6}}{{34}} = 4.6\,{\text{mL}} \\\
We have to find the amount of sulfate ions in the solution.
For that, we need to know the equivalent weight of sulfuric acid.
Equivalent weight of H2SO4{{\text{H}}_2}{\text{S}}{{\text{O}}_4} =Molecular  weight  valency=982=49 = \dfrac{{{\text{Molecular}}\;{\text{weight}}\;}}{{{\text{valency}}}} = \dfrac{{98}}{2} = 49
Amount of SO42{\text{S}}{{\text{O}}_4}^{2 - } =Normality X equivalent  weight X volume1000=34N×49×4.6mL1000 = \dfrac{{{\text{Normality X equivalent}}\;{\text{weight X volume}}}}{{{\text{1000}}}} = \dfrac{{34{\text{N}} \times 49 \times 4.6{\text{mL}}}}{{1000}}
Simplifying,
Amount of SO42{\text{S}}{{\text{O}}_4}^{2 - } =7663.61000=7.66g = \dfrac{{7663.6}}{{1000}} = 7.66{\text{g}}
Thus, the amount of sulfate ions is 7.66g7.66{\text{g}}.

Additional information:
There are different methods to express concentration. Concentration is the amount of solute dissolved in a given amount of solution. Different units of concentration are molarity, molality, normality, parts per million, billion, trillion, mass percent, percent weight by volume, etc. Inter conversion of units of concentration is also possible.

Note:
Titration, also known as titrimetry, is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte.The most common types of qualitative titration are acid-base titrations and redox titrations.