Question
Question: Show that the line $x\cos\alpha + y\sin\alpha = p$ touches the hyperbola $\frac{x^2}{a^2} - \frac{y^...
Show that the line xcosα+ysinα=p touches the hyperbola a2x2−b2y2=1 if a2cos2α−b2sin2α=p2.

Answer
The statement is proven. The line xcosα+ysinα=p touches the hyperbola a2x2−b2y2=1 if a2cos2α−b2sin2α=p2.
Explanation
Solution
-
Rewrite the line xcosα+ysinα=p in slope-intercept form: y=(−cotα)x+sinαp. Here, m=−cotα and c=sinαp.
-
The condition for tangency of y=mx+c to a2x2−b2y2=1 is c2=a2m2−b2.
-
Substitute m and c: (sinαp)2=a2(−cotα)2−b2 sin2αp2=a2sin2αcos2α−b2
-
Multiply by sin2α: p2=a2cos2α−b2sin2α This confirms the given condition.
-
For sinα=0, the line is x=±p. The condition becomes a2=p2, so x=±a. Substituting x=±a into the hyperbola equation gives y=0, confirming tangency at (±a,0).
