Solveeit Logo

Question

Question: Show that the line $x\cos\alpha + y\sin\alpha = p$ touches the hyperbola $\frac{x^2}{a^2} - \frac{y^...

Show that the line xcosα+ysinα=px\cos\alpha + y\sin\alpha = p touches the hyperbola x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 if a2cos2αb2sin2α=p2a^2\cos^2\alpha - b^2\sin^2\alpha = p^2.

Answer

The statement is proven. The line xcosα+ysinα=px\cos\alpha + y\sin\alpha = p touches the hyperbola x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 if a2cos2αb2sin2α=p2a^2\cos^2\alpha - b^2\sin^2\alpha = p^2.

Explanation

Solution

  1. Rewrite the line xcosα+ysinα=px\cos\alpha + y\sin\alpha = p in slope-intercept form: y=(cotα)x+psinαy = (-\cot\alpha)x + \frac{p}{\sin\alpha}. Here, m=cotαm = -\cot\alpha and c=psinαc = \frac{p}{\sin\alpha}.

  2. The condition for tangency of y=mx+cy=mx+c to x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 is c2=a2m2b2c^2 = a^2m^2 - b^2.

  3. Substitute mm and cc: (psinα)2=a2(cotα)2b2\left(\frac{p}{\sin\alpha}\right)^2 = a^2(-\cot\alpha)^2 - b^2 p2sin2α=a2cos2αsin2αb2\frac{p^2}{\sin^2\alpha} = a^2\frac{\cos^2\alpha}{\sin^2\alpha} - b^2

  4. Multiply by sin2α\sin^2\alpha: p2=a2cos2αb2sin2αp^2 = a^2\cos^2\alpha - b^2\sin^2\alpha This confirms the given condition.

  5. For sinα=0\sin\alpha = 0, the line is x=±px = \pm p. The condition becomes a2=p2a^2 = p^2, so x=±ax = \pm a. Substituting x=±ax = \pm a into the hyperbola equation gives y=0y=0, confirming tangency at (±a,0)(\pm a, 0).