Solveeit Logo

Question

Question: Prove that the area of the triangle formed by three points on an ellipse $\frac{x^2}{a^2} + \frac{y^...

Prove that the area of the triangle formed by three points on an ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, whose eccentric angles are θ,ϕ\theta, \phi, and ψ\psi, is 2absinϕψ2sinψθ2sinθϕ2|2ab \sin \frac{\phi - \psi}{2} \sin \frac{\psi - \theta}{2} \sin \frac{\theta - \phi}{2}|.

Answer

The area of the triangle formed by three points on an ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, whose eccentric angles are θ,ϕ\theta, \phi, and ψ\psi, is 2absinϕψ2sinψθ2sinθϕ2|2ab \sin \frac{\phi - \psi}{2} \sin \frac{\psi - \theta}{2} \sin \frac{\theta - \phi}{2}|.

Explanation

Solution

The coordinates of the three points on the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 with eccentric angles θ,ϕ,ψ\theta, \phi, \psi are (acosθ,bsinθ)(a \cos \theta, b \sin \theta), (acosϕ,bsinϕ)(a \cos \phi, b \sin \phi), and (acosψ,bsinψ)(a \cos \psi, b \sin \psi). The area of the triangle formed by these points is given by 12x1(y2y3)+x2(y3y1)+x3(y1y2)\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|. Substituting the coordinates and simplifying yields ab2sin(ϕθ)+sin(ψϕ)+sin(θψ)\frac{ab}{2} |\sin(\phi - \theta) + \sin(\psi - \phi) + \sin(\theta - \psi)|. Using the identity sinA+sinB+sinC=4sin(A/2)sin(B/2)sin(C/2)\sin A + \sin B + \sin C = -4 \sin(A/2) \sin(B/2) \sin(C/2) when A+B+C=0A+B+C=0, the area becomes ab24sin(ϕθ2)sin(ψϕ2)sin(θψ2)\frac{ab}{2} |-4 \sin(\frac{\phi - \theta}{2}) \sin(\frac{\psi - \phi}{2}) \sin(\frac{\theta - \psi}{2})|. This simplifies to 2absin(ϕθ2)sin(ψϕ2)sin(θψ2)2ab |\sin(\frac{\phi - \theta}{2}) \sin(\frac{\psi - \phi}{2}) \sin(\frac{\theta - \psi}{2})|, which is equal to 2absinϕψ2sinψθ2sinθϕ2|2ab \sin \frac{\phi - \psi}{2} \sin \frac{\psi - \theta}{2} \sin \frac{\theta - \phi}{2}|.