Solveeit Logo

Question

Question: $\lim_{x \to \frac{\pi}{4}} \frac{\cot^3x-\tan x}{\cos(x+\frac{\pi}{4}) \cos(x+\frac{\pi}{4})}$ is:...

limxπ4cot3xtanxcos(x+π4)cos(x+π4)\lim_{x \to \frac{\pi}{4}} \frac{\cot^3x-\tan x}{\cos(x+\frac{\pi}{4}) \cos(x+\frac{\pi}{4})} is:

A

424\sqrt{2}

B

8

C

4

D

828\sqrt{2}

Answer

8

Explanation

Solution

To evaluate the limit limxπ4cot3xtanxcos2(x+π4)\lim_{x \to \frac{\pi}{4}} \frac{\cot^3x-\tan x}{\cos^2(x+\frac{\pi}{4})}, we first check the form of the limit by substituting x=π4x = \frac{\pi}{4}:

Numerator: cot3(π4)tan(π4)=131=0\cot^3(\frac{\pi}{4}) - \tan(\frac{\pi}{4}) = 1^3 - 1 = 0.

Denominator: cos2(π4+π4)=cos2(π2)=02=0\cos^2(\frac{\pi}{4}+\frac{\pi}{4}) = \cos^2(\frac{\pi}{2}) = 0^2 = 0.

The limit is of the indeterminate form 00\frac{0}{0}. We can use L'Hopital's Rule or algebraic manipulation.

Method 1: Using L'Hopital's Rule

Let f(x)=cot3xtanxf(x) = \cot^3x-\tan x and g(x)=cos2(x+π4)g(x) = \cos^2(x+\frac{\pi}{4}).

First derivatives:

f(x)=ddx(cot3xtanx)=3cot2x(csc2x)sec2x=3cot2xcsc2xsec2xf'(x) = \frac{d}{dx}(\cot^3x-\tan x) = 3\cot^2x(-\csc^2x) - \sec^2x = -3\cot^2x\csc^2x - \sec^2x.

g(x)=ddx(cos2(x+π4))=2cos(x+π4)(sin(x+π4))=2sin(x+π4)cos(x+π4)g'(x) = \frac{d}{dx}(\cos^2(x+\frac{\pi}{4})) = 2\cos(x+\frac{\pi}{4})(-\sin(x+\frac{\pi}{4})) = -2\sin(x+\frac{\pi}{4})\cos(x+\frac{\pi}{4}).

Using the identity sin(2A)=2sinAcosA\sin(2A) = 2\sin A \cos A, we have g(x)=sin(2(x+π4))=sin(2x+π2)g'(x) = -\sin(2(x+\frac{\pi}{4})) = -\sin(2x+\frac{\pi}{2}).

Using the identity sin(θ+π2)=cosθ\sin(\theta+\frac{\pi}{2}) = \cos\theta, we get g(x)=cos(2x)g'(x) = -\cos(2x).

Evaluate f(π4)f'(\frac{\pi}{4}) and g(π4)g'(\frac{\pi}{4}):

f(π4)=3cot2(π4)csc2(π4)sec2(π4)=3(1)2(2)2(2)2=3(2)2=62=8f'(\frac{\pi}{4}) = -3\cot^2(\frac{\pi}{4})\csc^2(\frac{\pi}{4}) - \sec^2(\frac{\pi}{4}) = -3(1)^2(\sqrt{2})^2 - (\sqrt{2})^2 = -3(2) - 2 = -6 - 2 = -8.

g(π4)=cos(2π4)=cos(π2)=0g'(\frac{\pi}{4}) = -\cos(2 \cdot \frac{\pi}{4}) = -\cos(\frac{\pi}{2}) = 0.

Since g(π4)=0g'(\frac{\pi}{4})=0, the limit is still of the form 80\frac{-8}{0}, which means we need to apply L'Hopital's Rule again.

Second derivatives:

f(x)=ddx(3cot2xcsc2xsec2x)f''(x) = \frac{d}{dx}(-3\cot^2x\csc^2x - \sec^2x) =3[2cotx(csc2x)csc2x+cot2x(2cscx)(cscxcotx)]2secx(secxtanx)= -3[2\cot x(-\csc^2x)\csc^2x + \cot^2x(2\csc x)(-\csc x\cot x)] - 2\sec x(\sec x\tan x) =3[2cotxcsc4x2cot3xcsc2x]2sec2xtanx= -3[-2\cot x\csc^4x - 2\cot^3x\csc^2x] - 2\sec^2x\tan x =6cotxcsc4x+6cot3xcsc2x2sec2xtanx= 6\cot x\csc^4x + 6\cot^3x\csc^2x - 2\sec^2x\tan x.

Evaluate f(π4)f''(\frac{\pi}{4}):

f(π4)=6(1)(2)4+6(1)3(2)22(2)2(1)f''(\frac{\pi}{4}) = 6(1)(\sqrt{2})^4 + 6(1)^3(\sqrt{2})^2 - 2(\sqrt{2})^2(1) =6(4)+6(2)2(2)=24+124=32= 6(4) + 6(2) - 2(2) = 24 + 12 - 4 = 32.

g(x)=ddx(cos(2x))=(sin(2x)2)=2sin(2x)g''(x) = \frac{d}{dx}(-\cos(2x)) = -(-\sin(2x) \cdot 2) = 2\sin(2x).

Evaluate g(π4)g''(\frac{\pi}{4}):

g(π4)=2sin(2π4)=2sin(π2)=2(1)=2g''(\frac{\pi}{4}) = 2\sin(2 \cdot \frac{\pi}{4}) = 2\sin(\frac{\pi}{2}) = 2(1) = 2.

Now, apply L'Hopital's Rule:

limxπ4f(x)g(x)=322=16\lim_{x \to \frac{\pi}{4}} \frac{f''(x)}{g''(x)} = \frac{32}{2} = 16.

However, 16 is not among the options. Let's recheck the problem statement or try algebraic manipulation more carefully.

Method 2: Using Algebraic Manipulation

Let x=π4+hx = \frac{\pi}{4} + h. As xπ4x \to \frac{\pi}{4}, h0h \to 0.

The limit becomes limh0cot3(π4+h)tan(π4+h)cos2(π4+h+π4)\lim_{h \to 0} \frac{\cot^3(\frac{\pi}{4}+h)-\tan(\frac{\pi}{4}+h)}{\cos^2(\frac{\pi}{4}+h+\frac{\pi}{4})}.

Denominator: cos2(π2+h)=(sinh)2=sin2h\cos^2(\frac{\pi}{2}+h) = (-\sin h)^2 = \sin^2 h.

Numerator:

We know tan(π4+h)=1+tanh1tanh\tan(\frac{\pi}{4}+h) = \frac{1+\tan h}{1-\tan h} and cot(π4+h)=1tanh1+tanh\cot(\frac{\pi}{4}+h) = \frac{1-\tan h}{1+\tan h}.

Let t=tanht = \tan h. As h0h \to 0, t0t \to 0.

Numerator is (1t1+t)31+t1t=(1t)4(1+t)4(1+t)3(1t)\left(\frac{1-t}{1+t}\right)^3 - \frac{1+t}{1-t} = \frac{(1-t)^4 - (1+t)^4}{(1+t)^3(1-t)}.

Using the identity a4b4=(a2b2)(a2+b2)=(ab)(a+b)(a2+b2)a^4-b^4 = (a^2-b^2)(a^2+b^2) = (a-b)(a+b)(a^2+b^2):

(1t)4(1+t)4=((1t)2(1+t)2)((1t)2+(1+t)2)(1-t)^4 - (1+t)^4 = ((1-t)^2 - (1+t)^2)((1-t)^2 + (1+t)^2) =((12t+t2)(1+2t+t2))((12t+t2)+(1+2t+t2))= ((1-2t+t^2) - (1+2t+t^2))((1-2t+t^2) + (1+2t+t^2)) =(4t)(2+2t2)=8t(1+t2)= (-4t)(2+2t^2) = -8t(1+t^2).

So, the numerator is 8t(1+t2)(1+t)3(1t)\frac{-8t(1+t^2)}{(1+t)^3(1-t)}.

The expression becomes limt08t(1+t2)(1+t)3(1t)sin2h\lim_{t \to 0} \frac{\frac{-8t(1+t^2)}{(1+t)^3(1-t)}}{\sin^2 h}.

Since t=tanht = \tan h, sin2h=(tanh1+tan2h)2=tan2h1+tan2h=t21+t2\sin^2 h = \left(\frac{\tan h}{\sqrt{1+\tan^2 h}}\right)^2 = \frac{\tan^2 h}{1+\tan^2 h} = \frac{t^2}{1+t^2}.

So the limit is limt08t(1+t2)(1+t)3(1t)1+t2t2\lim_{t \to 0} \frac{-8t(1+t^2)}{(1+t)^3(1-t)} \cdot \frac{1+t^2}{t^2}. =limt08(1+t2)2t(1+t)3(1t)= \lim_{t \to 0} \frac{-8(1+t^2)^2}{t(1+t)^3(1-t)}.

This still results in 80\frac{-8}{0}, which means the limit is \infty or -\infty.

Let's re-examine the denominator of the original expression: cos(x+π4)cos(x+π4)\cos(x+\frac{\pi}{4}) \cos(x+\frac{\pi}{4}).

The question writes it as cos(x+π4)cos(x+π4)\cos(x+\frac{\pi}{4}) \cos(x+\frac{\pi}{4}), which is cos2(x+π4)\cos^2(x+\frac{\pi}{4}). This is what I used.

Let's re-read the question carefully. Is there a typo?

If the denominator was cos(x+π4)\cos(x+\frac{\pi}{4}), then g(x)=cos(x+π4)g(x) = \cos(x+\frac{\pi}{4}).

g(x)=sin(x+π4)g'(x) = -\sin(x+\frac{\pi}{4}).

g(π4)=sin(π2)=1g'(\frac{\pi}{4}) = -\sin(\frac{\pi}{2}) = -1.

In this case, the limit would be f(π4)g(π4)=81=8\frac{f'(\frac{\pi}{4})}{g'(\frac{\pi}{4})} = \frac{-8}{-1} = 8.

This is option (2).

It is common for questions to have a typo where a square is intended but written as a product of two identical terms. If it were cos2(x+π4)\cos^2(x+\frac{\pi}{4}), the answer would be 16. If it were cos(x+π4)\cos(x+\frac{\pi}{4}), the answer would be 8. Given the options, it is highly likely that the denominator was intended to be cos(x+π4)\cos(x+\frac{\pi}{4}).

Let's assume the denominator is cos(x+π4)\cos(x+\frac{\pi}{4}).

limxπ4cot3xtanxcos(x+π4)\lim_{x \to \frac{\pi}{4}} \frac{\cot^3x-\tan x}{\cos(x+\frac{\pi}{4})}

Numerator f(x)=cot3xtanxf(x) = \cot^3x-\tan x. f(π4)=0f(\frac{\pi}{4})=0.

f(x)=3cot2xcsc2xsec2xf'(x) = -3\cot^2x\csc^2x - \sec^2x.

f(π4)=3(1)2(2)2(2)2=3(2)2=62=8f'(\frac{\pi}{4}) = -3(1)^2(\sqrt{2})^2 - (\sqrt{2})^2 = -3(2) - 2 = -6 - 2 = -8.

Denominator g(x)=cos(x+π4)g(x) = \cos(x+\frac{\pi}{4}). g(π4)=0g(\frac{\pi}{4})=0.

g(x)=sin(x+π4)g'(x) = -\sin(x+\frac{\pi}{4}).

g(π4)=sin(π4+π4)=sin(π2)=1g'(\frac{\pi}{4}) = -\sin(\frac{\pi}{4}+\frac{\pi}{4}) = -\sin(\frac{\pi}{2}) = -1.

Using L'Hopital's Rule:

limxπ4f(x)g(x)=81=8\lim_{x \to \frac{\pi}{4}} \frac{f'(x)}{g'(x)} = \frac{-8}{-1} = 8.

This matches option (2). This is a common situation in multiple choice questions where a slight ambiguity in notation or a typo can lead to one of the given options. The repeated term cos(x+π4)cos(x+π4)\cos(x+\frac{\pi}{4}) \cos(x+\frac{\pi}{4}) strongly suggests cos2(x+π4)\cos^2(x+\frac{\pi}{4}), but if that leads to an answer not in options, then it's worth considering the possibility of a simpler denominator.

Let's verify using the algebraic method for the simpler denominator: limh08t(1+t2)(1+t)3(1t)sinh\lim_{h \to 0} \frac{\frac{-8t(1+t^2)}{(1+t)^3(1-t)}}{\sin h}. Since t=tanht = \tan h, sinhh\sin h \approx h and tht \approx h for small hh. limt08t(1+t2)(1+t)3(1t)t\lim_{t \to 0} \frac{-8t(1+t^2)}{(1+t)^3(1-t) \cdot t}. Cancel tt: limt08(1+t2)(1+t)3(1t)\lim_{t \to 0} \frac{-8(1+t^2)}{(1+t)^3(1-t)}. Substitute t=0t=0: 8(1+0)2(1+0)3(10)=811=8\frac{-8(1+0)^2}{(1+0)^3(1-0)} = \frac{-8}{1 \cdot 1} = -8.

Wait, there is a sign error in the algebraic method. cos(x+π4)=cos(π2+h)=sinh\cos(x+\frac{\pi}{4}) = \cos(\frac{\pi}{2}+h) = -\sin h. So the denominator is sinh-\sin h. The expression becomes limh08t(1+t2)(1+t)3(1t)sinh\lim_{h \to 0} \frac{\frac{-8t(1+t^2)}{(1+t)^3(1-t)}}{-\sin h}. =limt08t(1+t2)(1+t)3(1t)1sinh= \lim_{t \to 0} \frac{-8t(1+t^2)}{(1+t)^3(1-t)} \cdot \frac{1}{-\sin h}. Since t=tanht=\tan h, sinh=tanh1+tan2h=t1+t2\sin h = \frac{\tan h}{\sqrt{1+\tan^2 h}} = \frac{t}{\sqrt{1+t^2}}. So, 1sinh=1+t2t\frac{1}{-\sin h} = \frac{-\sqrt{1+t^2}}{t}. The limit is limt08t(1+t2)(1+t)3(1t)1+t2t\lim_{t \to 0} \frac{-8t(1+t^2)}{(1+t)^3(1-t)} \cdot \frac{-\sqrt{1+t^2}}{t}. Cancel tt: =limt08(1+t2)(1+t2)(1+t)3(1t)= \lim_{t \to 0} \frac{-8(1+t^2)(- \sqrt{1+t^2})}{(1+t)^3(1-t)}. =limt08(1+t2)3/2(1+t)3(1t)= \lim_{t \to 0} \frac{8(1+t^2)^{3/2}}{(1+t)^3(1-t)}. Substitute t=0t=0: 8(1+0)3/2(1+0)3(10)=8(1)11=8\frac{8(1+0)^{3/2}}{(1+0)^3(1-0)} = \frac{8(1)}{1 \cdot 1} = 8.

Both methods (L'Hopital's and algebraic manipulation) yield 8, assuming the denominator is cos(x+π4)\cos(x+\frac{\pi}{4}). This strongly suggests that the question intended the denominator to be cos(x+π4)\cos(x+\frac{\pi}{4}) rather than cos2(x+π4)\cos^2(x+\frac{\pi}{4}).