Solveeit Logo

Question

Question: Let the image of point (1, 2) with respect to x-axis, y-axis and line y = -x are A, B and C respecti...

Let the image of point (1, 2) with respect to x-axis, y-axis and line y = -x are A, B and C respectively. Then area of \triangleABC (in square units) is -

A

5

B

0

C

15

D

17

Answer

5

Explanation

Solution

Let the given point be P(1,2)P(1,2).

  1. Reflection about x-axis: A=(1,2)A = (1, -2).

  2. Reflection about y-axis: B=(1,2)B = (-1, 2).

  3. Reflection about the line y=xy = -x: The reflection of (x,y)(x, y) about y=xy = -x is (y,x)(-y, -x). Hence, C=(2,1)C = (-2, -1).

  4. Area of ABC\triangle ABC:

    Using the determinant formula:

    Area=12xA(yByC)+xB(yCyA)+xC(yAyB)\text{Area} = \frac{1}{2} \left| x_A(y_B - y_C) + x_B(y_C - y_A) + x_C(y_A - y_B) \right|

    Substituting:

    Area=121(2(1))+(1)((1)(2))+(2)((2)2)\text{Area} = \frac{1}{2} \left| 1\,(2 - (-1)) + (-1)\,((-1) - (-2)) + (-2)\,((-2) - 2) \right| =121(3)+(1)(1)+(2)(4)= \frac{1}{2} \left| 1\,(3) + (-1)\,(1) + (-2)\,(-4) \right| =1231+8=12×10=5= \frac{1}{2} \left| 3 - 1 + 8 \right| = \frac{1}{2} \times 10 = 5

Reflect (1,2)(1,2) to get A(1,2)A(1,-2), B(1,2)B(-1,2), and C(2,1)C(-2,-1); then apply the determinant formula to find the area = 5 sq. units.