Solveeit Logo

Question

Question: Let $I = \int_{1}^{3}|(x-1)(x-2)(x-3)|dx$. The value of $I^{-1}$, is equal to...

Let I=13(x1)(x2)(x3)dxI = \int_{1}^{3}|(x-1)(x-2)(x-3)|dx. The value of I1I^{-1}, is equal to

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

To evaluate I=13(x1)(x2)(x3)dxI = \int_{1}^{3}|(x-1)(x-2)(x-3)|dx, we can make a substitution. Let u=x2u = x-2. Then du=dxdu = dx. When x=1x=1, u=12=1u=1-2=-1. When x=3x=3, u=32=1u=3-2=1. The expression (x1)(x2)(x3)(x-1)(x-2)(x-3) becomes (u+21)(u)(u+23)=(u+1)(u)(u1)=u(u21)=u3u(u+2-1)(u)(u+2-3) = (u+1)(u)(u-1) = u(u^2-1) = u^3-u. So, I=11u3uduI = \int_{-1}^{1}|u^3-u|du.

The function g(u)=u3ug(u) = u^3-u has roots at u=1,0,1u=-1, 0, 1. For u(1,0)u \in (-1, 0), u3u>0u^3-u > 0, so u3u=u3u|u^3-u| = u^3-u. For u(0,1)u \in (0, 1), u3u<0u^3-u < 0, so u3u=(u3u)=uu3|u^3-u| = -(u^3-u) = u-u^3.

The integral can be written as: I=10(u3u)du+01(uu3)duI = \int_{-1}^{0}(u^3-u)du + \int_{0}^{1}(u-u^3)du.

Alternatively, notice that u3uu^3-u is an odd function, so u3u|u^3-u| is an even function. For an even function f(u)f(u), aaf(u)du=20af(u)du\int_{-a}^{a}f(u)du = 2\int_{0}^{a}f(u)du. Thus, I=201u3uduI = 2\int_{0}^{1}|u^3-u|du. In the interval [0,1][0, 1], u3u=uu3|u^3-u| = u-u^3. I=201(uu3)du=2[u22u44]01=2((1214)(00))=2(14)=12I = 2\int_{0}^{1}(u-u^3)du = 2 \left[\frac{u^2}{2} - \frac{u^4}{4}\right]_{0}^{1} = 2 \left(\left(\frac{1}{2} - \frac{1}{4}\right) - (0-0)\right) = 2 \left(\frac{1}{4}\right) = \frac{1}{2}.

The question asks for I1I^{-1}. I1=(12)1=2I^{-1} = \left(\frac{1}{2}\right)^{-1} = 2.

The value of I1I^{-1} is 2.