Question
Question: Let $I = \int_{1}^{3}|(x-1)(x-2)(x-3)|dx$. The value of $I^{-1}$, is equal to...
Let I=∫13∣(x−1)(x−2)(x−3)∣dx. The value of I−1, is equal to

1
2
3
4
2
Solution
To evaluate I=∫13∣(x−1)(x−2)(x−3)∣dx, we can make a substitution. Let u=x−2. Then du=dx. When x=1, u=1−2=−1. When x=3, u=3−2=1. The expression (x−1)(x−2)(x−3) becomes (u+2−1)(u)(u+2−3)=(u+1)(u)(u−1)=u(u2−1)=u3−u. So, I=∫−11∣u3−u∣du.
The function g(u)=u3−u has roots at u=−1,0,1. For u∈(−1,0), u3−u>0, so ∣u3−u∣=u3−u. For u∈(0,1), u3−u<0, so ∣u3−u∣=−(u3−u)=u−u3.
The integral can be written as: I=∫−10(u3−u)du+∫01(u−u3)du.
Alternatively, notice that u3−u is an odd function, so ∣u3−u∣ is an even function. For an even function f(u), ∫−aaf(u)du=2∫0af(u)du. Thus, I=2∫01∣u3−u∣du. In the interval [0,1], ∣u3−u∣=u−u3. I=2∫01(u−u3)du=2[2u2−4u4]01=2((21−41)−(0−0))=2(41)=21.
The question asks for I−1. I−1=(21)−1=2.
The value of I−1 is 2.