Solveeit Logo

Question

Question: Let $I = \int \frac{3x}{1+2x^4} dx$...

Let I=3x1+2x4dxI = \int \frac{3x}{1+2x^4} dx

A

The question asks to solve the indefinite integral I=3x1+2x4dxI = \int \frac{3x}{1+2x^4} dx.

B

To solve this integral, we use the method of substitution. Notice that the term x4x^4 can be written as (x2)2(x^2)^2, and the numerator contains xx. This suggests substituting t=x2t = x^2.

C

Let t=x2t = x^2. Then dt=2xdxdt = 2x \, dx, so xdx=dt2x \, dx = \frac{dt}{2}. The integral becomes I=32dt1+2t2I = \frac{3}{2} \int \frac{dt}{1+2t^2}.

D

The integral is I=322tan1(2x2)+CI = \frac{3}{2\sqrt{2}} \tan^{-1}(\sqrt{2}x^2) + C.

Answer

322tan1(2x2)+C\frac{3}{2\sqrt{2}} \tan^{-1}(\sqrt{2}x^2) + C

Explanation

Solution

To solve the indefinite integral I=3x1+2x4dxI = \int \frac{3x}{1+2x^4} dx, we use the substitution method. Let t=x2t = x^2. Differentiating with respect to xx, we get dtdx=2x\frac{dt}{dx} = 2x, which implies dt=2xdxdt = 2x \, dx, or xdx=dt2x \, dx = \frac{dt}{2}.

The integral can be rewritten in terms of tt as:

I=31+2(x2)2(xdx)=311+2t2(dt2)=32dt1+2t2I = \int \frac{3}{1+2(x^2)^2} (x \, dx) = 3 \int \frac{1}{1+2t^2} \left(\frac{dt}{2}\right) = \frac{3}{2} \int \frac{dt}{1+2t^2}

To apply the standard integral formula 1a2+u2du=1atan1(ua)+C\int \frac{1}{a^2+u^2} du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C, we rewrite the denominator 1+2t21+2t^2 as 12+(2t)21^2 + (\sqrt{2}t)^2. Let u=2tu = \sqrt{2}t. Then du=2dtdu = \sqrt{2} dt, which means dt=du2dt = \frac{du}{\sqrt{2}}.

Substituting these into the integral:

I=32112+u2(du2)=322du12+u2I = \frac{3}{2} \int \frac{1}{1^2 + u^2} \left(\frac{du}{\sqrt{2}}\right) = \frac{3}{2\sqrt{2}} \int \frac{du}{1^2 + u^2}

Applying the standard formula with a=1a=1:

I=322(11tan1(u1))+C=322tan1(u)+CI = \frac{3}{2\sqrt{2}} \left(\frac{1}{1} \tan^{-1}\left(\frac{u}{1}\right)\right) + C = \frac{3}{2\sqrt{2}} \tan^{-1}(u) + C

Finally, substitute back u=2tu = \sqrt{2}t and t=x2t = x^2, so u=2x2u = \sqrt{2}x^2:

I=322tan1(2x2)+CI = \frac{3}{2\sqrt{2}} \tan^{-1}(\sqrt{2}x^2) + C

The constant term can be rationalized as 324\frac{3\sqrt{2}}{4}.