Solveeit Logo

Question

Question: Let $f(x) = \begin{cases} x+1, & 0 \leq x \leq 1 \\ 2x^2 - 6x + 6, & 1 < x \leq 2 \end{cases}$ and $...

Let f(x)={x+1,0x12x26x+6,1<x2f(x) = \begin{cases} x+1, & 0 \leq x \leq 1 \\ 2x^2 - 6x + 6, & 1 < x \leq 2 \end{cases} and g(t)=t1tf(x)dxg(t) = \int_{t-1}^{t} f(x) dx for t[1,2]t \in [1,2]

Which of the following hold(s) good?

A

f(x)f(x) is continuous and differentiable in [0, 2]

B

g(t)g'(t) vanishes for t = 3/2 and 2

C

g(t)g(t) is maximum at t = 3/2

D

g(t)g(t) is minimum at t = 1

Answer

B, C, D

Explanation

Solution

1. Analysis of f(x)f(x) for Continuity and Differentiability (Option A)

The function f(x)f(x) is defined as: f(x)={x+1,0x12x26x+6,1<x2f(x) = \begin{cases} x+1, & 0 \leq x \leq 1 \\ 2x^2 - 6x + 6, & 1 < x \leq 2 \end{cases}

  • Continuity at x=1x=1:

    • Left-hand limit: limx1f(x)=limx1(x+1)=1+1=2\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x+1) = 1+1 = 2.
    • Right-hand limit: limx1+f(x)=limx1+(2x26x+6)=2(1)26(1)+6=26+6=2\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x^2 - 6x + 6) = 2(1)^2 - 6(1) + 6 = 2 - 6 + 6 = 2.
    • Function value at x=1x=1: f(1)=1+1=2f(1) = 1+1 = 2. Since the left-hand limit, right-hand limit, and function value are equal, f(x)f(x) is continuous at x=1x=1. As both pieces are polynomials, f(x)f(x) is continuous on [0,2][0, 2].
  • Differentiability at x=1x=1:

    • Left-hand derivative: f(x)=ddx(x+1)=1f'(x) = \frac{d}{dx}(x+1) = 1 for 0x<10 \leq x < 1. So, f(1)=1f'(1^-) = 1.
    • Right-hand derivative: f(x)=ddx(2x26x+6)=4x6f'(x) = \frac{d}{dx}(2x^2 - 6x + 6) = 4x - 6 for 1<x21 < x \leq 2. So, f(1+)=4(1)6=46=2f'(1^+) = 4(1) - 6 = 4 - 6 = -2. Since f(1)f(1+)f'(1^-) \neq f'(1^+), f(x)f(x) is not differentiable at x=1x=1. Therefore, Option A is false.

2. Analysis of g(t)g(t) and its derivative g(t)g'(t)

g(t)=t1tf(x)dxg(t) = \int_{t-1}^{t} f(x) dx for t[1,2]t \in [1,2]. Using the Leibniz integral rule, g(t)=ddtu(t)v(t)f(x)dx=f(v(t))v(t)f(u(t))u(t)g'(t) = \frac{d}{dt} \int_{u(t)}^{v(t)} f(x) dx = f(v(t))v'(t) - f(u(t))u'(t). Here, v(t)=tv(t) = t and u(t)=t1u(t) = t-1. So, v(t)=1v'(t) = 1 and u(t)=1u'(t) = 1. g(t)=f(t)1f(t1)1=f(t)f(t1)g'(t) = f(t) \cdot 1 - f(t-1) \cdot 1 = f(t) - f(t-1).

We need to consider the definition of f(x)f(x) based on the value of xx. For t[1,2]t \in [1, 2]:

  • The argument tt is in [1,2][1, 2].
  • The argument t1t-1 is in [0,1][0, 1].

So, for t[1,2]t \in [1, 2]:

  • f(t1)=(t1)+1=tf(t-1) = (t-1)+1 = t (since 0t110 \leq t-1 \leq 1).
  • For f(t)f(t):
    • If t=1t=1, f(1)=1+1=2f(1) = 1+1 = 2.
    • If 1<t21 < t \leq 2, f(t)=2t26t+6f(t) = 2t^2 - 6t + 6.

Let's evaluate g(t)g'(t):

  • For t=1t=1: g(1)=f(1)f(0)=(1+1)(0+1)=21=1g'(1) = f(1) - f(0) = (1+1) - (0+1) = 2 - 1 = 1.
  • For 1<t21 < t \leq 2: g(t)=(2t26t+6)t=2t27t+6g'(t) = (2t^2 - 6t + 6) - t = 2t^2 - 7t + 6.

3. Analysis of Option B

Option B states that g(t)g'(t) vanishes for t=3/2t = 3/2 and 22. We examine g(t)g'(t) for 1<t21 < t \leq 2: Set g(t)=0    2t27t+6=0g'(t) = 0 \implies 2t^2 - 7t + 6 = 0. Factoring the quadratic equation: (2t3)(t2)=0(2t - 3)(t - 2) = 0. The roots are t=3/2t = 3/2 and t=2t = 2. Both 3/23/2 and 22 are in the interval (1,2](1, 2]. Also, g(1)=10g'(1) = 1 \neq 0. Thus, g(t)g'(t) vanishes for t=3/2t=3/2 and t=2t=2. Option B is true.

4. Analysis of Options C and D

To analyze where g(t)g(t) is maximum or minimum, we study the sign of g(t)=2t27t+6g'(t) = 2t^2 - 7t + 6 for t[1,2]t \in [1, 2]. The roots of g(t)g'(t) are 3/23/2 and 22. The parabola y=2t27t+6y = 2t^2 - 7t + 6 opens upwards.

  • For t[1,3/2)t \in [1, 3/2): g(t)>0g'(t) > 0 (e.g., g(1.1)=2(1.1)27(1.1)+6=2.427.7+6=0.72>0g'(1.1) = 2(1.1)^2 - 7(1.1) + 6 = 2.42 - 7.7 + 6 = 0.72 > 0). This means g(t)g(t) is increasing.
  • For t(3/2,2)t \in (3/2, 2): g(t)<0g'(t) < 0 (e.g., g(1.6)=2(1.6)27(1.6)+6=5.1211.2+6=0.08<0g'(1.6) = 2(1.6)^2 - 7(1.6) + 6 = 5.12 - 11.2 + 6 = -0.08 < 0). This means g(t)g(t) is decreasing.
  • At t=3/2t=3/2, g(3/2)=0g'(3/2) = 0.

This indicates that g(t)g(t) has a local maximum at t=3/2t=3/2. To determine if it's a global maximum, we evaluate g(t)g(t) at critical points and endpoints. Let's calculate g(t)g(t) for t[1,2]t \in [1, 2]: g(t)=t11(x+1)dx+1t(2x26x+6)dxg(t) = \int_{t-1}^{1} (x+1) dx + \int_{1}^{t} (2x^2 - 6x + 6) dx g(t)=[x22+x]t11+[2x333x2+6x]1tg(t) = \left[\frac{x^2}{2} + x\right]_{t-1}^{1} + \left[\frac{2x^3}{3} - 3x^2 + 6x\right]_{1}^{t} g(t)=(12+1)((t1)22+(t1))+(2t333t2+6t)(233+6)g(t) = \left(\frac{1}{2}+1\right) - \left(\frac{(t-1)^2}{2} + (t-1)\right) + \left(\frac{2t^3}{3} - 3t^2 + 6t\right) - \left(\frac{2}{3} - 3 + 6\right) g(t)=32t22t+1+2t22+2t333t2+6t113g(t) = \frac{3}{2} - \frac{t^2-2t+1+2t-2}{2} + \frac{2t^3}{3} - 3t^2 + 6t - \frac{11}{3} g(t)=32t212+2t333t2+6t113g(t) = \frac{3}{2} - \frac{t^2-1}{2} + \frac{2t^3}{3} - 3t^2 + 6t - \frac{11}{3} g(t)=4t22+2t333t2+6t113g(t) = \frac{4-t^2}{2} + \frac{2t^3}{3} - 3t^2 + 6t - \frac{11}{3} g(t)=2t22+2t333t2+6t113g(t) = 2 - \frac{t^2}{2} + \frac{2t^3}{3} - 3t^2 + 6t - \frac{11}{3} g(t)=2t337t22+6t53g(t) = \frac{2t^3}{3} - \frac{7t^2}{2} + 6t - \frac{5}{3}

Now evaluate g(t)g(t) at t=1,3/2,2t=1, 3/2, 2:

  • g(1)=2(1)337(1)22+6(1)53=2372+653=172+6=572=32=1.5g(1) = \frac{2(1)^3}{3} - \frac{7(1)^2}{2} + 6(1) - \frac{5}{3} = \frac{2}{3} - \frac{7}{2} + 6 - \frac{5}{3} = -1 - \frac{7}{2} + 6 = 5 - \frac{7}{2} = \frac{3}{2} = 1.5.
  • g(3/2)=2(3/2)337(3/2)22+6(3/2)53=2(27/8)37(9/4)2+953=94638+953=54189+2164024=41241.708g(3/2) = \frac{2(3/2)^3}{3} - \frac{7(3/2)^2}{2} + 6(3/2) - \frac{5}{3} = \frac{2(27/8)}{3} - \frac{7(9/4)}{2} + 9 - \frac{5}{3} = \frac{9}{4} - \frac{63}{8} + 9 - \frac{5}{3} = \frac{54-189+216-40}{24} = \frac{41}{24} \approx 1.708.
  • g(2)=2(2)337(2)22+6(2)53=16314+1253=1132=531.667g(2) = \frac{2(2)^3}{3} - \frac{7(2)^2}{2} + 6(2) - \frac{5}{3} = \frac{16}{3} - 14 + 12 - \frac{5}{3} = \frac{11}{3} - 2 = \frac{5}{3} \approx 1.667.

Comparing the values: g(1)=1.5g(1) = 1.5, g(3/2)1.708g(3/2) \approx 1.708, g(2)1.667g(2) \approx 1.667.

  • The maximum value of g(t)g(t) in [1,2][1, 2] is 41/2441/24, which occurs at t=3/2t=3/2. So, Option C is true.
  • The minimum value of g(t)g(t) in [1,2][1, 2] is 3/23/2, which occurs at t=1t=1. So, Option D is true.

Conclusion: Options B, C, and D are correct.