Question
Question: Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n}$ such that $P(n)f(n+2) =...
Let f(n)=1+21+31+41+...+n1 such that P(n)f(n+2)=P(n)f(n)+q(n). Where P(n), Q(n) are polynomials of least possible degree and P(n) has leading coefficient unity. Then match the following Column-I with Column-II.
∑n=1mnp(n)−2
∑n=1m2q(n)−3
∑n=1mnp(n)+q2(n)−11
∑n=1mnq2(n)−p(n)−7
A → D, B → A, C → B, D → C.
Solution
Solution Explanation
-
We are given
f(n)=1+21+⋯+n1
and
P(n)f(n+2)=P(n)f(n)+q(n).
Rearrange to get
q(n)=P(n)(f(n+2)−f(n))=P(n)(n+11+n+21). -
To have q(n) as a polynomial (and P(n) of least degree with leading coefficient 1), choose
$$ P(n)=(n+1)(n+2)=n^2+3n+2.
-
Now compute the four sums (using p(n)=P(n)=n2+3n+2 and q(n)=2n+3):
-
Row A:
n=1∑mnp(n)−2=n=1∑mn(n2+3n+2)−2=n=1∑mnn2+3n=n=1∑m(n+3).Thus,
n=1∑m(n+3)=2m(m+1)+3m=2m(m+1+6)=2m(m+7). -
Row B:
n=1∑m2q(n)−3=n=1∑m2(2n+3)−3=n=1∑m22n=n=1∑mn=2m(m+1). -
Row C:
p(n)+q2(n)−11=(n2+3n+2)+(4n2+12n+9)−11=5n2+15n.
First note q2(n)=(2n+3)2=4n2+12n+9. Then,Dividing by n,
n5n2+15n=5n+15.So,
n=1∑m(5n+15)=5n=1∑m(n+3)=5(2m(m+1)+3m)=25m(m+7). -
Row D:
q2(n)−p(n)−7=(4n2+12n+9)−(n2+3n+2)−7=3n2+9n.
We have,Dividing by n,
n3n2+9n=3n+9.Thus,
n=1∑m(3n+9)=3n=1∑mn+9m=23m(m+1)+9m=23m(m+7).
-
-
Now compare each computed sum with the given Column-II expressions:
- Row A: Computed 2m(m+7) matches Column-II option 2m(m+7) (Row D option in the given table).
- Row B: Computed 2m(m+1) matches Column-II option 2m(m+1) (Row A option).
- Row C: Computed 25m(m+7) matches Column-II option 25m(m+7) (Row B option).
- Row D: Computed 23m(m+7) matches Column-II option 23m(m+7) (Row C option).
Thus, the matching is:
A → D, B → A, C → B, D → C.
Final Answer:
A → D, B → A, C → B, D → C.