Solveeit Logo

Question

Question: Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n}$ such that $P(n)f(n+2) =...

Let f(n)=1+12+13+14+...+1nf(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n} such that P(n)f(n+2)=P(n)f(n)+q(n)P(n)f(n+2) = P(n)f(n) + q(n). Where P(n)P(n), Q(n)Q(n) are polynomials of least possible degree and P(n)P(n) has leading coefficient unity. Then match the following Column-I with Column-II.

A

n=1mp(n)2n\sum_{n=1}^{m} \frac{p(n)-2}{n}

B

n=1mq(n)32\sum_{n=1}^{m} \frac{q(n)-3}{2}

C

n=1mp(n)+q2(n)11n\sum_{n=1}^{m} \frac{p(n) + q^2(n)-11}{n}

D

n=1mq2(n)p(n)7n\sum_{n=1}^{m} \frac{q^2(n) - p(n)-7}{n}

Answer

A → D, B → A, C → B, D → C.

Explanation

Solution

Solution Explanation

  1. We are given
      f(n)=1+12++1nf(n)=1+\tfrac{1}{2}+\cdots+\tfrac{1}{n}
      and
      P(n)f(n+2)=P(n)f(n)+q(n).P(n)f(n+2)=P(n)f(n)+q(n).
    Rearrange to get
      q(n)=P(n)(f(n+2)f(n))=P(n)(1n+1+1n+2).q(n)=P(n)\Bigl(f(n+2)-f(n)\Bigr)=P(n)\left(\frac{1}{n+1}+\frac{1}{n+2}\right).

  2. To have q(n)q(n) as a polynomial (and P(n)P(n) of least degree with leading coefficient 1), choose
      $$ P(n)=(n+1)(n+2)=n^2+3n+2.

Then   $$ q(n)=(n+1)(n+2)\left(\frac{1}{n+1}+\frac{1}{n+2}\right)=(n+2)+(n+1)=2n+3.
  1. Now compute the four sums (using p(n)=P(n)=n2+3n+2p(n)=P(n)=n^2+3n+2 and q(n)=2n+3q(n)=2n+3):

    • Row A:

      n=1mp(n)2n=n=1m(n2+3n+2)2n=n=1mn2+3nn=n=1m(n+3).\sum_{n=1}^{m}\frac{p(n)-2}{n}=\sum_{n=1}^{m}\frac{(n^2+3n+2)-2}{n}=\sum_{n=1}^{m}\frac{n^2+3n}{n}=\sum_{n=1}^{m}(n+3).

      Thus,

      n=1m(n+3)=m(m+1)2+3m=m(m+1+6)2=m(m+7)2.\sum_{n=1}^{m}(n+3)=\frac{m(m+1)}{2}+3m=\frac{m(m+1+6)}{2}=\frac{m(m+7)}{2}.
    • Row B:

      n=1mq(n)32=n=1m(2n+3)32=n=1m2n2=n=1mn=m(m+1)2.\sum_{n=1}^{m}\frac{q(n)-3}{2}=\sum_{n=1}^{m}\frac{(2n+3)-3}{2}=\sum_{n=1}^{m}\frac{2n}{2}=\sum_{n=1}^{m} n=\frac{m(m+1)}{2}.
    • Row C:
      First note q2(n)=(2n+3)2=4n2+12n+9q^2(n)=(2n+3)^2=4n^2+12n+9. Then,

      p(n)+q2(n)11=(n2+3n+2)+(4n2+12n+9)11=5n2+15n.p(n)+q^2(n)-11=(n^2+3n+2)+(4n^2+12n+9)-11=5n^2+15n.

      Dividing by nn,

      5n2+15nn=5n+15.\frac{5n^2+15n}{n}=5n+15.

      So,

      n=1m(5n+15)=5n=1m(n+3)=5(m(m+1)2+3m)=5m(m+7)2.\sum_{n=1}^{m}(5n+15)=5\sum_{n=1}^{m}(n+3)=5\left(\frac{m(m+1)}{2}+3m\right)=\frac{5m(m+7)}{2}.
    • Row D:
      We have,

      q2(n)p(n)7=(4n2+12n+9)(n2+3n+2)7=3n2+9n.q^2(n)-p(n)-7=(4n^2+12n+9)-(n^2+3n+2)-7=3n^2+9n.

      Dividing by nn,

      3n2+9nn=3n+9.\frac{3n^2+9n}{n}=3n+9.

      Thus,

      n=1m(3n+9)=3n=1mn+9m=3m(m+1)2+9m=3m(m+7)2.\sum_{n=1}^{m}(3n+9)=3\sum_{n=1}^{m}n+9m=\frac{3m(m+1)}{2}+9m=\frac{3m(m+7)}{2}.
  2. Now compare each computed sum with the given Column-II expressions:

    • Row A: Computed m(m+7)2\frac{m(m+7)}{2} matches Column-II option m(m+7)2 \frac{m(m+7)}{2} (Row D option in the given table).
    • Row B: Computed m(m+1)2\frac{m(m+1)}{2} matches Column-II option m(m+1)2 \frac{m(m+1)}{2} (Row A option).
    • Row C: Computed 5m(m+7)2\frac{5m(m+7)}{2} matches Column-II option 5m(m+7)2 \frac{5m(m+7)}{2} (Row B option).
    • Row D: Computed 3m(m+7)2\frac{3m(m+7)}{2} matches Column-II option 3m(m+7)2 \frac{3m(m+7)}{2} (Row C option).

Thus, the matching is:
  A → D, B → A, C → B, D → C.


Final Answer:
A → D, B → A, C → B, D → C.