Solveeit Logo

Question

Question: Let a, b, c, x, y, z ∈ R such that $ax + by + cz = 1$ $bx + cy + az = 2$ $cx + ay + bz = 3$. the...

Let a, b, c, x, y, z ∈ R such that

ax+by+cz=1ax + by + cz = 1

bx+cy+az=2bx + cy + az = 2

cx+ay+bz=3cx + ay + bz = 3.

then the value of (a3+b3+c33abc)(x3+y3+z33xyz)=(a³ + b³ + c³ – 3abc)(x³ + y³ + z³ – 3xyz) =

A

18

B

– 18

C

9

Answer

18

Explanation

Solution

The problem asks us to find the value of (a3+b3+c33abc)(x3+y3+z33xyz)(a^3 + b^3 + c^3 – 3abc)(x^3 + y^3 + z^3 – 3xyz) given a system of three linear equations.

The given system of equations is:

  1. ax+by+cz=1ax + by + cz = 1
  2. bx+cy+az=2bx + cy + az = 2
  3. cx+ay+bz=3cx + ay + bz = 3

We know the algebraic identity:

A3+B3+C33ABC=(A+B+C)(A+Bω+Cω2)(A+Bω2+Cω)A^3 + B^3 + C^3 - 3ABC = (A+B+C)(A+B\omega+C\omega^2)(A+B\omega^2+C\omega), where ω\omega is a complex cube root of unity (ω3=1,1+ω+ω2=0\omega^3=1, 1+\omega+\omega^2=0).

Let Pa=a3+b3+c33abcP_a = a^3 + b^3 + c^3 - 3abc and Px=x3+y3+z33xyzP_x = x^3 + y^3 + z^3 - 3xyz.

So, Pa=(a+b+c)(a+bω+cω2)(a+bω2+cω)P_a = (a+b+c)(a+b\omega+c\omega^2)(a+b\omega^2+c\omega)

And Px=(x+y+z)(x+yω+zω2)(x+yω2+zω)P_x = (x+y+z)(x+y\omega+z\omega^2)(x+y\omega^2+z\omega)

We need to find PaPxP_a P_x.

PaPx=(a+b+c)(x+y+z)(a+bω+cω2)(x+yω+zω2)(a+bω2+cω)(x+yω2+zω)P_a P_x = (a+b+c)(x+y+z) \cdot (a+b\omega+c\omega^2)(x+y\omega+z\omega^2) \cdot (a+b\omega^2+c\omega)(x+y\omega^2+z\omega)

Let's evaluate each product term by term.

Part 1: (a+b+c)(x+y+z)(a+b+c)(x+y+z)

Add the three given equations:

(ax+by+cz)+(bx+cy+az)+(cx+ay+bz)=1+2+3(ax + by + cz) + (bx + cy + az) + (cx + ay + bz) = 1 + 2 + 3

(a+b+c)x+(b+c+a)y+(c+a+b)z=6(a+b+c)x + (b+c+a)y + (c+a+b)z = 6

(a+b+c)(x+y+z)=6(a+b+c)(x+y+z) = 6

Part 2: (a+bω+cω2)(x+yω+zω2)(a+b\omega+c\omega^2)(x+y\omega+z\omega^2)

Let's expand this product:

(a+bω+cω2)(x+yω+zω2)(a+b\omega+c\omega^2)(x+y\omega+z\omega^2)

=ax+ayω+azω2+bxω+byω2+bzω3+cxω2+cyω3+czω4= ax + ay\omega + az\omega^2 + bx\omega + by\omega^2 + bz\omega^3 + cx\omega^2 + cy\omega^3 + cz\omega^4

Since ω3=1\omega^3=1 and ω4=ω\omega^4=\omega:

=ax+ayω+azω2+bxω+byω2+bz+cxω2+cy+czω= ax + ay\omega + az\omega^2 + bx\omega + by\omega^2 + bz + cx\omega^2 + cy + cz\omega

Group terms by powers of ω\omega:

=(ax+bz+cy)+(ay+bx+cz)ω+(az+by+cx)ω2= (ax+bz+cy) + (ay+bx+cz)\omega + (az+by+cx)\omega^2

Let's compare the coefficients with the given equations:

ax+by+cz=1ax+by+cz = 1

bx+cy+az=2bx+cy+az = 2

cx+ay+bz=3cx+ay+bz = 3

The first term is (ax+cy+bz)(ax+cy+bz). This is exactly the third equation, cx+ay+bz=3cx+ay+bz = 3. So, ax+cy+bz=3ax+cy+bz = 3.

The second term is (ay+bx+cz)(ay+bx+cz). This is exactly the first equation, ax+by+cz=1ax+by+cz = 1. So, ay+bx+cz=1ay+bx+cz = 1.

The third term is (az+by+cx)(az+by+cx). This is exactly the second equation, bx+cy+az=2bx+cy+az = 2. So, az+by+cx=2az+by+cx = 2.

Therefore, (a+bω+cω2)(x+yω+zω2)=3+1ω+2ω2=3+ω+2ω2(a+b\omega+c\omega^2)(x+y\omega+z\omega^2) = 3 + 1\cdot\omega + 2\cdot\omega^2 = 3+\omega+2\omega^2.

Part 3: (a+bω2+cω)(x+yω2+zω)(a+b\omega^2+c\omega)(x+y\omega^2+z\omega)

This product is the conjugate of the product in Part 2, assuming a,b,c,x,y,za,b,c,x,y,z are real (which is stated in the question).

Let A2=a+bω2+cωA_2 = a+b\omega^2+c\omega and X2=x+yω2+zωX_2 = x+y\omega^2+z\omega.

A2X2=(a+bω2+cω)(x+yω2+zω)A_2 X_2 = (a+b\omega^2+c\omega)(x+y\omega^2+z\omega)

=ax+ayω2+azω+bxω2+byω4+bzω3+cxω+cyω3+czω2= ax + ay\omega^2 + az\omega + bx\omega^2 + by\omega^4 + bz\omega^3 + cx\omega + cy\omega^3 + cz\omega^2

Since ω3=1\omega^3=1 and ω4=ω\omega^4=\omega:

=ax+ayω2+azω+bxω2+byω+bz+cxω+cy+czω2= ax + ay\omega^2 + az\omega + bx\omega^2 + by\omega + bz + cx\omega + cy + cz\omega^2

Group terms by powers of ω\omega:

=(ax+bz+cy)+(az+by+cx)ω+(ay+bx+cz)ω2= (ax+bz+cy) + (az+by+cx)\omega + (ay+bx+cz)\omega^2

Using the values from the given equations:

=3+2ω+1ω2=3+2ω+ω2= 3 + 2\omega + 1\omega^2 = 3+2\omega+\omega^2.

Now, substitute these parts back into the expression for PaPxP_a P_x:

PaPx=(6)(3+ω+2ω2)(3+2ω+ω2)P_a P_x = (6) \cdot (3+\omega+2\omega^2) \cdot (3+2\omega+\omega^2)

Let's calculate the product of the two complex terms:

(3+ω+2ω2)(3+2ω+ω2)(3+\omega+2\omega^2)(3+2\omega+\omega^2)

=3(3+2ω+ω2)+ω(3+2ω+ω2)+2ω2(3+2ω+ω2)= 3(3+2\omega+\omega^2) + \omega(3+2\omega+\omega^2) + 2\omega^2(3+2\omega+\omega^2)

=(9+6ω+3ω2)+(3ω+2ω2+ω3)+(6ω2+4ω3+2ω4)= (9+6\omega+3\omega^2) + (3\omega+2\omega^2+\omega^3) + (6\omega^2+4\omega^3+2\omega^4)

Substitute ω3=1\omega^3=1 and ω4=ω\omega^4=\omega:

=(9+6ω+3ω2)+(3ω+2ω2+1)+(6ω2+4+2ω)= (9+6\omega+3\omega^2) + (3\omega+2\omega^2+1) + (6\omega^2+4+2\omega)

Group terms by powers of ω\omega:

Constant terms: 9+1+4=149+1+4 = 14

ω\omega terms: 6ω+3ω+2ω=11ω6\omega+3\omega+2\omega = 11\omega

ω2\omega^2 terms: 3ω2+2ω2+6ω2=11ω23\omega^2+2\omega^2+6\omega^2 = 11\omega^2

So, the product is 14+11ω+11ω2=14+11(ω+ω2)14 + 11\omega + 11\omega^2 = 14 + 11(\omega+\omega^2).

Since 1+ω+ω2=01+\omega+\omega^2=0, we have ω+ω2=1\omega+\omega^2 = -1.

So, the product is 14+11(1)=1411=314 + 11(-1) = 14 - 11 = 3.

Finally, substitute this back into the expression for PaPxP_a P_x:

PaPx=63=18P_a P_x = 6 \cdot 3 = 18.

The value of (a3+b3+c33abc)(x3+y3+z33xyz)=18(a^3 + b^3 + c^3 – 3abc)(x^3 + y^3 + z^3 – 3xyz) = 18.