Question
Question: Let a, b, c, x, y, z ∈ R such that $ax + by + cz = 1$ $bx + cy + az = 2$ $cx + ay + bz = 3$. the...
Let a, b, c, x, y, z ∈ R such that
ax+by+cz=1
bx+cy+az=2
cx+ay+bz=3.
then the value of (a3+b3+c3–3abc)(x3+y3+z3–3xyz)=

18
– 18
9
18
Solution
The problem asks us to find the value of (a3+b3+c3–3abc)(x3+y3+z3–3xyz) given a system of three linear equations.
The given system of equations is:
- ax+by+cz=1
- bx+cy+az=2
- cx+ay+bz=3
We know the algebraic identity:
A3+B3+C3−3ABC=(A+B+C)(A+Bω+Cω2)(A+Bω2+Cω), where ω is a complex cube root of unity (ω3=1,1+ω+ω2=0).
Let Pa=a3+b3+c3−3abc and Px=x3+y3+z3−3xyz.
So, Pa=(a+b+c)(a+bω+cω2)(a+bω2+cω)
And Px=(x+y+z)(x+yω+zω2)(x+yω2+zω)
We need to find PaPx.
PaPx=(a+b+c)(x+y+z)⋅(a+bω+cω2)(x+yω+zω2)⋅(a+bω2+cω)(x+yω2+zω)
Let's evaluate each product term by term.
Part 1: (a+b+c)(x+y+z)
Add the three given equations:
(ax+by+cz)+(bx+cy+az)+(cx+ay+bz)=1+2+3
(a+b+c)x+(b+c+a)y+(c+a+b)z=6
(a+b+c)(x+y+z)=6
Part 2: (a+bω+cω2)(x+yω+zω2)
Let's expand this product:
(a+bω+cω2)(x+yω+zω2)
=ax+ayω+azω2+bxω+byω2+bzω3+cxω2+cyω3+czω4
Since ω3=1 and ω4=ω:
=ax+ayω+azω2+bxω+byω2+bz+cxω2+cy+czω
Group terms by powers of ω:
=(ax+bz+cy)+(ay+bx+cz)ω+(az+by+cx)ω2
Let's compare the coefficients with the given equations:
ax+by+cz=1
bx+cy+az=2
cx+ay+bz=3
The first term is (ax+cy+bz). This is exactly the third equation, cx+ay+bz=3. So, ax+cy+bz=3.
The second term is (ay+bx+cz). This is exactly the first equation, ax+by+cz=1. So, ay+bx+cz=1.
The third term is (az+by+cx). This is exactly the second equation, bx+cy+az=2. So, az+by+cx=2.
Therefore, (a+bω+cω2)(x+yω+zω2)=3+1⋅ω+2⋅ω2=3+ω+2ω2.
Part 3: (a+bω2+cω)(x+yω2+zω)
This product is the conjugate of the product in Part 2, assuming a,b,c,x,y,z are real (which is stated in the question).
Let A2=a+bω2+cω and X2=x+yω2+zω.
A2X2=(a+bω2+cω)(x+yω2+zω)
=ax+ayω2+azω+bxω2+byω4+bzω3+cxω+cyω3+czω2
Since ω3=1 and ω4=ω:
=ax+ayω2+azω+bxω2+byω+bz+cxω+cy+czω2
Group terms by powers of ω:
=(ax+bz+cy)+(az+by+cx)ω+(ay+bx+cz)ω2
Using the values from the given equations:
=3+2ω+1ω2=3+2ω+ω2.
Now, substitute these parts back into the expression for PaPx:
PaPx=(6)⋅(3+ω+2ω2)⋅(3+2ω+ω2)
Let's calculate the product of the two complex terms:
(3+ω+2ω2)(3+2ω+ω2)
=3(3+2ω+ω2)+ω(3+2ω+ω2)+2ω2(3+2ω+ω2)
=(9+6ω+3ω2)+(3ω+2ω2+ω3)+(6ω2+4ω3+2ω4)
Substitute ω3=1 and ω4=ω:
=(9+6ω+3ω2)+(3ω+2ω2+1)+(6ω2+4+2ω)
Group terms by powers of ω:
Constant terms: 9+1+4=14
ω terms: 6ω+3ω+2ω=11ω
ω2 terms: 3ω2+2ω2+6ω2=11ω2
So, the product is 14+11ω+11ω2=14+11(ω+ω2).
Since 1+ω+ω2=0, we have ω+ω2=−1.
So, the product is 14+11(−1)=14−11=3.
Finally, substitute this back into the expression for PaPx:
PaPx=6⋅3=18.
The value of (a3+b3+c3–3abc)(x3+y3+z3–3xyz)=18.