Solveeit Logo

Question

Question: $\int \frac{e^{4 \log x} - e^{5 \log x}}{x^5} dx$...

e4logxe5logxx5dx\int \frac{e^{4 \log x} - e^{5 \log x}}{x^5} dx

Answer

logxx+C\log |x| - x + C

Explanation

Solution

The problem asks us to evaluate the integral e4logxe5logxx5dx\int \frac{e^{4 \log x} - e^{5 \log x}}{x^5} dx.

First, we simplify the terms in the numerator using the logarithm property alogb=logbaa \log b = \log b^a and the exponential property elogy=ye^{\log y} = y.

  1. Simplify e4logxe^{4 \log x}: e4logx=elogx4=x4e^{4 \log x} = e^{\log x^4} = x^4

  2. Simplify e5logxe^{5 \log x}: e5logx=elogx5=x5e^{5 \log x} = e^{\log x^5} = x^5

Now, substitute these simplified expressions back into the integral: x4x5x5dx\int \frac{x^4 - x^5}{x^5} dx

Next, we can split the fraction into two separate terms: (x4x5x5x5)dx\int \left( \frac{x^4}{x^5} - \frac{x^5}{x^5} \right) dx

Simplify each term: (1x1)dx\int \left( \frac{1}{x} - 1 \right) dx

Now, we integrate each term separately using the standard integration formulas: 1xdx=logx+C\int \frac{1}{x} dx = \log |x| + C kdx=kx+C\int k dx = kx + C (where k is a constant)

So, the integral becomes: 1xdx1dx=logxx+C\int \frac{1}{x} dx - \int 1 dx = \log |x| - x + C where CC is the constant of integration.