Question
Question: $\int \frac{e^{4 \log x} - e^{5 \log x}}{x^5} dx$...
∫x5e4logx−e5logxdx

Answer
log∣x∣−x+C
Explanation
Solution
The problem asks us to evaluate the integral ∫x5e4logx−e5logxdx.
First, we simplify the terms in the numerator using the logarithm property alogb=logba and the exponential property elogy=y.
-
Simplify e4logx: e4logx=elogx4=x4
-
Simplify e5logx: e5logx=elogx5=x5
Now, substitute these simplified expressions back into the integral: ∫x5x4−x5dx
Next, we can split the fraction into two separate terms: ∫(x5x4−x5x5)dx
Simplify each term: ∫(x1−1)dx
Now, we integrate each term separately using the standard integration formulas: ∫x1dx=log∣x∣+C ∫kdx=kx+C (where k is a constant)
So, the integral becomes: ∫x1dx−∫1dx=log∣x∣−x+C where C is the constant of integration.